
Predicting the Success of x86-64 Binary Rewriters
Akshay Sood
GrammaTech, Inc.

asood@grammatech.com

Keara Hill∗
Binghamton University
khill9@binghamton.edu

Kimble D. Houck∗
kimble.d.houck@khouck.net

Zachary P. Fry
GrammaTech, Inc.

zfry@grammatech.com

Jonathan Dorn
GrammaTech, Inc.

jdorn@grammatech.com

ABSTRACT
Binary rewriters aim to modify the behavior of binary executa-
bles without having access to their source code. While there has
been significant research on binary rewriting tools and techniques,
assessing the effectiveness of binary rewriters remains a time con-
suming and challenging task that impedes wider adoption by the
community. Differences in capabilities among rewriters, as well as
varying but generally large computational costs, make it difficult
for users to select rewriters appropriate to their specific workloads.
In this paper, we propose a machine learning-based approach to
predict the success of binary rewriters for x86-64 binaries, allowing
users to quickly judge the likelihood of various binary transforms.
We compare various learning algorithms for modeling a range of
binary rewriting tools, explore different feature representations,
and examine the performance of models trained on a diverse set of
programming languages. Our findings provide insights into learn-
ing algorithms, feature representations, and the generalizability of
models across programming languages for this task. We are able to
model rewriting success with a high level of predictive performance,
as measured by the area under the curve (AUC), enabling users to
make much faster judgment of rewriter effectiveness on a given
binary, at a fraction of the computational cost of actual rewriting.
Our work also contributes to the understanding of the strengths
and weaknesses of different binary rewriters and empowers tool
developers and researchers to make informed decisions regarding
the application of rewriting tools.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering.

KEYWORDS
Binary Analysis, Binary Recompilation, Binary Rewriting
ACM Reference Format:
Akshay Sood, Keara Hill, Kimble D. Houck, Zachary P. Fry, and Jonathan
Dorn. 2023. Predicting the Success of x86-64 Binary Rewriters. In Proceedings

∗Work done at GrammaTech, Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MAPS ’23, December 3, 2023, San Francisco, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

of The 7th Annual Symposium on Machine Programming (MAPS ’23). ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Binary rewriting refers to the process of modifying the behavior
or properties of a compiled binary executable without access to
its source code. It has gained significant attention due to a wide
range of potential applications, including patching security vulner-
abilities, code obfuscation, software instrumentation, performance
optimization, cross-platform adaptation, among others.

Researchers have proposed a multitude of approaches for binary
rewriting, and recent works have performed comprehensive sur-
veys of binary rewriting approaches [18] and empirical evaluations
of existing rewriting tools [14]. However, there continue to exist
gaps in our understanding of the generalizability and limitations of
binary rewriters. For instance, rewriters are primarily developed
for and tested on commercial off-the-shelf (COTS) binaries, which
are often programmed in C and C++, especially for applications
requiring low-level access to hardware or high-performance capa-
bilities. However, different languages exhibit unique coding styles,
idioms, and semantic nuances that may affect the applicability of
rewriting techniques. Rewriting tools and techniques can also differ
widely in their computational costs, and some rewriters may be
prohibitively slow or resource-intensive for binaries with specific
characteristics. For these reasons, it is challenging for users to select
rewriters appropriate to their setting and difficult for researchers
and tool developers to identify weaknesses that may need to be
addressed through new techniques and tool improvements.

In this work, we use a machine-learning-based approach for mod-
eling binary rewriter success to address some of these challenges.
Machine-learning techniques have been applied to various areas
of binary analysis, such as disassembly [20], function identifica-
tion [15], similarity detection [12], and malware detection [2]. Our
work focuses on the application of machine-learning to predicting
rewriting success across a range of binary rewriting tools.

The main contributions of this paper are threefold. First, we
extract an informative set of features from binaries and perform a
comparison of various learning algorithms for predicting rewrit-
ing success across a range of binary rewriting tools. Second, we
evaluate the performance of models trained on a diverse set of pro-
gramming languages and investigate the generalizability of these
models across different language ecosystems. Third, we compare
the predictive value of features that we have engineered for this task
against a baseline set of features. We further examine which fea-
tures are most important for rewriting viability and for predicting
rewriting success to inform user decision-making.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MAPS ’23, December 3, 2023, San Francisco, CA, USA Akshay Sood, Keara Hill, Kimble D. Houck, Zachary P. Fry, and Jonathan Dorn

2 RELATEDWORK
Our work builds upon the comparative evaluation of rewriting
tools by Schulte et al. [14]. The authors evaluate the performance
of several rewriters on two rewriting tasks over x86-64 binaries
compiled from a set of thirty-four C/C++ programs. They also train
decision tree models over simple features extracted from the bi-
naries in order to identify features predictive of rewriting success.
In our work, we select a largely overlapping set of rewriters and
model their ability at performing the same rewriting tasks. How-
ever, our work focuses on predictive modeling of the rewriters’
success rather than on evaluating the rewriters themselves. We
perform a comprehensive investigation of modeling approaches
for predicting rewriting success that includes (i) collecting data
for an augmented set of programs, including several non-C/C++
languages, (ii) extracting and engineering more advanced binary
features in order to gain more predictive and explanatory value, (iii)
evaluating several classes of models, varying in their complexity,
for predicting rewriting success, and (iv) investigating the general-
izability of models trained on different language sub-groups. We
also make improvements to the quality of the data collected and
generate more accurate estimates of rewriter performance on the
set of programs in our data set.

3 METHODS
3.1 Data
3.1.1 Tool Selection. We select seven rewriting tools for predic-
tive modeling: ddisasm [8], dyninst [4], e9patch [7], egalito [19],
reopt [11], retrowrite [6], and zipr [10]. Except for dyninst, the tools
selected are a subset of the tools evaluated by Schulte et al. [14],
and are chosen based on rewriting ability, tool maturity, adequate
robustness and performance for data collection, in addition to en-
suring coverage of a breadth of popular rewriting techniques. The
techniques represented include direct rewriting (dyninst, egalito and
zipr), reassemblable disassembly (ddisasm and retrowrite), LLVM
rewriting (reopt), and trampoline rewriting (e9patch). Note that
while dyninst supports both static and dynamic instrumentation,
we only model its static rewriting capabilities in this work. More
generally, we focus on modeling static rewriters and exclude dy-
namic rewriters due to scalability and performance reasons.

3.1.2 Tasks. We treat the problem of predicting rewriting success
as a binary classification task, where for each rewriting tool consid-
ered, a classifier is trained to predict whether the tool will succeed
or fail at a given rewriting task. Following the evaluation in Schulte
et al. [14], we consider two types of rewriting tasks:

Relowering. Relowering represents the ability of a rewriting tool
to process the input binary, transform it into an internal or external
intermediate representation, and generate a new binary. The tool is
considered to be successful at this task if it generates a new binary
that passes a smoke test to validate that the binary is executable.
While this represents an identity transform, it is non-trivial for
most tools, and the rewritten binaries are generally distinct from
the original. However, some tools handle analysis errors by in-
corporating reasonable defaults (such as by linking code from the
original binary on rewriting failure, or by preserving unidentified

symbols which continue to resolve correctly if the code is left undis-
turbed in memory). Three of the seven tools considered, namely,
dyninst, e9patch, and zipr , achieve near-perfect success rates for
this task, and are thus excluded from the set of rewriters modeled
for relowering. For these reasons, we also model the tools’ rewriting
ability at a more challenging task that better represents a real-world
application of rewriting.

AFL++ Instrumentation. This task evaluates the tool’s ability to
transform a binary with AFL++ instrumentation [1]. This process
represents a rewriting task that is more complex but of greater
interest than relowering, since it measures the ability of the tool
to transform a binary into a representation that is useful for down-
stream rewriting applications, such as gray-box fuzzing. Although
all the tools that we have selected for modeling claim to support
instrumentation with AFL++, egalito and reopt failed to generate
any executable binaries instrumented with AFL, and are excluded
from predictive models trained for this task.

3.1.3 Binaries. We collect data on 2,650 binary samples generated
using permutations of compilation variants of 58 benchmark pro-
grams, compiled on Ubuntu 20.04 for x86-64. We include the 34
C/C++ programs used in the comparative evaluation by Schulte
et al. [14], along with two other C/C++ programs: the VLC media
player [17], as well as a trivial “Hello, World!” program in C++ to
serve as a low-water mark for program complexity.

In addition, we collect data on several programs from different
open-source projects in non-C/C++ languages, in order to model
rewriting ability over a diverse set of source programming lan-
guages. We compile binaries for, and evaluate rewriters on, 7 FOR-
TRAN programs, 5 Go programs, 5 Haskell programs, and 5 OCaml
programs.

Table 1: Compilation variants used to generate binaries.

Compiler Flags Relocation
(position-) Symbols

clang O0 Independent Present
gcc O1 Dependent Stripped
icx O2
gfortran O3

Os
Ofast

OLLVM fla Independent Present
sub Dependent Stripped
bcf

go O0 Independent Present
Dependent Stripped

ghc O0 Dependent Present
O1 Stripped
O2

ocaml O1 Independent Present
Stripped

Predicting the Success of x86-64 Binary Rewriters MAPS ’23, December 3, 2023, San Francisco, CA, USA

Table 2: Benchmark programs along with associated source language and number of samples in the data set.

Program Language Samples Program Language Samples Program Language Samples

alscal FORTRAN 24 libreoffice C/C++ 22 proftpd C/C++ 84
anope C/C++ 80 libzmq C/C++ 40 qmail C/C++ 72
asterisk C/C++ 72 lighttpd C/C++ 42 redis C/C++ 42
bind C/C++ 48 magic-trace OCaml 2 samba C/C++ 78
bitcoin C/C++ 56 memcached C/C++ 36 satisfy FORTRAN 24
cli Go 4 mirage OCaml 2 satisfy_openmp FORTRAN 24
compose Go 4 monero C/C++ 72 sendmail C/C++ 80
crowdsec Go 4 mosh C/C++ 80 shellcheck Haskell 6
dijkstra FORTRAN 24 mysql C/C++ 48 sipwitch C/C++ 80
dijkstra_openmp FORTRAN 24 nginx C/C++ 80 snort3 C/C++ 72
dnsmasq C/C++ 80 nsq Go 4 sqlite C/C++ 84
dune OCaml 2 openssh C/C++ 80 squid C/C++ 80
f77_to_f90 FORTRAN 24 openvpn C/C++ 84 unison OCaml 2
filezilla C/C++ 72 osv-scanner Go 4 unrealircd C/C++ 84
frama-c OCaml 2 pandoc Haskell 6 vim C/C++ 84
gnome-calculator C/C++ 10 pidgin C/C++ 84 vlc C/C++ 72
hello C/C++ 60 pks C/C++ 80 wordsnake FORTRAN 24
implicitcad Haskell 6 poppler C/C++ 36 xmonad Haskell 6
kmonad Haskell 6 postfix C/C++ 84 zip C/C++ 80
leafnode C/C++ 84

We compile the programs in our data set using several compila-
tion configurations, varying the choice of compiler, optimization
flags, whether the binary is a position-independent executable (PIE),
and whether the binary is stripped of debug and symbol informa-
tion. Table 1 lists all the compilation variants used to generate the
samples in our data set, and Table 2 lists the programs along with
source language and number of samples for each program. We use
and extend the open-source project lifter-eval [9] to execute binary
rewriters on our suite of binary samples and collect labels for both
relowering and AFL tasks.

3.1.4 Features. The compiled binaries are stored in the ELF file
format, and we parse these files using the LIEF parser [16] to extract
most of the features in our data set. For a baseline set of features, we
collect all the features extracted by Schulte et al. [14], representing
whether the binary is a position-independent executable, whether
it contains debug and symbol information, and whether it contains
any of 11 standard ELF sections. We also extract several other
features, including various measures of binary and section size,
and one feature (num_indirect_instructions) derived from a
fast linear disassembly of the binary, performed using the Capstone
disassembler [5]. Our feature engineering is driven by an iterative
process: we investigate unexpected or interesting experimental
findings, such as variations in rewriting success between programs
of similar apparent complexity, and design new features that could
potentially explain these findings. We focus on engineered rather
than learned feature representations, since the structured nature of
the binary file format lends itself to high-performing hand-crafted
features in other domains such as malware detection [2]. Table 3
lists all the features that we extract from the binaries.

Table 3: List of features extracted from binaries. Features
marked with an asterisk are included in Schulte et al. [14].

Feature Description

eh_frame_size Size of .eh_frame section
has_section_data_rel_ro* Binary has section .data_rel_ro
has_section_debug_str* Binary has section .debug_str
has_section_gcc_except_table* Binary has section .gcc_except_table
has_section_got_plt* Binary has section .got.plt
has_section_interp* Binary has section .interp
has_section_note_abi_tag* Binary has section .note.ABI-tag
has_section_note_gnu_build_id* Binary has section .note.gnu.build-id
has_section_plt_got* Binary has section .plt.got
has_section_rela_plt* Binary has section .rela.plt
has_section_strtab* Binary has section .strtab
has_section_symtab* Binary has section .symtab
is_debug_section_present Binary has any debug section
is_pie* Position-independent executable
is_stripped* Binary is stripped
num_indirect_instructions Number of indirect instructions
num_nonstandard_sections Number of non-standard sections
size Size of binary
text_section_size Size of .text section
uses_dynamic_libraries Binary uses dynamic libraries
uses_multithreading Binary uses multithreading
uses_nonstandard_section Binary has any non-standard section
uses_setjmp Binary uses setjmp for control flow

3.2 Model Training
We train and compare several modeling approaches, varying in
their complexity, for predicting rewriting success. We train simpler
models, namely L1-regularized logistic regression and decision
trees, to establish baseline levels of performance as well as for their

MAPS ’23, December 3, 2023, San Francisco, CA, USA Akshay Sood, Keara Hill, Kimble D. Houck, Zachary P. Fry, and Jonathan Dorn

explanatory value. We also train more complex models, namely
multilayer perceptrons, random forests, and gradient boosted trees,
in order to learn richer representations and establish upper bounds
on predictive performance for this task and data set. We train the
models using the machine-learning Python library scikit-learn [13].

We use k-fold cross-validation with 𝑘 = 4 for model selection
and evaluation. We attempt to mitigate risks of overfitting asso-
ciated with a small data set and large variations in program size,
complexity, language, and other characteristics in several key ways.
We also try to ensure that the evaluation results are robust to vari-
ance in model performance arising from the choice of random seeds
used to group binaries into cross-validation folds and to optimize
the learning objectives. To these ends, we undertake the following
measures:

• Binaries that correspond to different compilation variants
of a single program are grouped together while splitting
data for cross-validation. This ensures that related binaries
for a given program are only used to either train, validate
or test a given model, mitigating the risks of overfitting to
specific programs or achieving overoptimistic assessments
of generalization performance.

• Cross-validation folds are stratified so that each fold contains
a similar proportion of binaries for each target label and
language, as well as a similar proportion of binaries that
represent libraries.

• Since the number of compilation variants can vary signif-
icantly by program, the samples are weighted in order to
assign equal weight to each program, rather than each bi-
nary, in order to avoid biasing models towards programs for
which we have more data available.

• Repeated k-fold cross-validation is performed for both model
selection and evaluation, where each repetition corresponds
to a different random seed used for splitting data into cross-
validation folds and training the model. Randomized hyper-
parameter search [3] is used to identify 10 candidate sets of
hyperparameters, and repeated k-fold cross-validation with
10 repetitions is used to select the optimal set of hyperpa-
rameters from these. Then, models are trained and evaluated
using the optimal set of hyperparameters over 50 repetitions
of k-fold cross-validation. To compute the final performance
results, the model selection and evaluation procedure is re-
peated with five different random seeds used for randomized
hyperparameter search.

Feature Selection. We perform two feature selection transfor-
mations in the modeling pipeline. First, variance thresholding is
used to remove features with low or zero variance. Second, real
or integer-valued features are standardized to have zero mean and
unit variance to assist learning algorithms that are sensitive to
differential feature scales (i.e., logistic regression and multilayer
perceptrons).

Hyperparameters. Weperform randomized hyperparameter search
for model selection, with search spaces and budgets customized for
each type of model. The following hyperparameters are optimized
for each model:

• Decision trees: maximum depth, split strategy (best vs. ran-
dom), minimum number of samples required for splits/leaves,
minimum decrease in impurity required for splits, class
weight

• Logistic regression: L1 regularization penalty, class weight
• Multilayer perceptron: hidden layer size, initial learning rate,
L2 regularization penalty

• Random forests: number of trees in ensemble, maximum
depth per tree, maximum number of features considered per
split, class weight

• Gradient boosted trees: number of trees in ensemble, maxi-
mum depth per tree, maximum number of features consid-
ered per split, learning rate

4 EXPERIMENTAL RESULTS
In this section, we present results of experiments formulated to
investigate several key questions for the predictive modeling of
binary rewriters:

• What learning algorithms allow us to achieve the highest
level of predictive performance for modeling binary rewrit-
ers? Do we gain any benefits from using more complex,
black-box models over simpler, more interpretable models
for predicting rewriting success?

• Do binary rewriters perform equally well on C/C++ and
non-C/C++ languages? Does our ability to predict rewrit-
ing success depend on which languages are included in the
training data?

• Can we design features to improve model performance for
predicting rewriting success? What features provide the
greatest predictive value for this task?

4.1 Comparative Evaluation of Models
In order to identify which models are best-suited for predicting
rewriting success, and to establish upper bounds of predictive per-
formance, we perform a comparative evaluation of various models,
ranging in complexity, for predicting rewriting success of several
rewriting tools for both tasks. Figures 1a and 1b show model per-
formance for predicting relowering and AFL success respectively,
measured in terms of area under the curve (AUC). While decision
trees generally perform worse than other models for most rewrit-
ers for both tasks, no model consistently outperforms the rest. We
therefore restrict ourselves to logistic regression models for other
experiments owing to their ease of interpretability and lower com-
putational costs for training.

4.2 Effect of Languages on Rewriting Success
and Predictive Performance

Tables 4 and 5 show rewriting success rates grouped by language for
relowering and AFL tasks, respectively. Note that success rates for
each language are computed using equal weights assigned to each
binary for that language. The rewriters exhibit varying levels of
success across different languages, and this variation is not consis-
tent across the two rewriting tasks. This suggests two possibilities:
(i) the differences in rewriting performance across languages arise
due to differing distributions of binaries for each language, with
no language-specific effects on rewriting ability, or (ii) rewriting

Predicting the Success of x86-64 Binary Rewriters MAPS ’23, December 3, 2023, San Francisco, CA, USA

(a) Model performance for predicting relowering success.

(b) Model performance for predicting AFL success.

Figure 1: Comparisons of model performance across multiple rewriters for (a) relowering and (b) AFL prediction tasks. Each
box plot represents AUCs for a given model, rewriter and prediction task, aggregated over 250 points, corresponding to 5 sets
of hyperparameters identified after model selection and 50 random seeds used for model evaluation. Each point represents
the average AUC across four cross-validation folds. dyninst, e9patch, and zipr are not modeled for relowering and egalito and
reopt are not modeled for AFL due to ∼100% and 0% rewriting success rates, respectively. AUC values below 0.50 are omitted.

Table 4: Rewriting success rates for relowering.

Language Binaries ddisasm dyninst e9patch egalito reopt retrowrite zipr

FORTRAN 168 1.00 1.00 1.00 0.49 0.91 0.25 1.00
C 2422 0.88 1.00 1.00 0.19 0.46 0.08 0.99
Ocaml 10 1.00 1.00 1.00 0.00 0.00 0.00 0.00
Go 20 0.00 0.60 0.20 0.00 0.00 0.00 0.00
Haskell 30 0.00 1.00 1.00 0.00 0.00 0.00 0.00

Table 5: Rewriting success rates for AFL.

Language Binaries ddisasm dyninst e9patch egalito reopt retrowrite zipr

FORTRAN 168 0.71 0.45 0.36 0.00 0.00 0.18 0.36
C 2422 0.80 0.42 0.44 0.00 0.00 0.09 0.29
OCaml 10 0.90 0.00 1.00 0.00 0.00 0.00 0.00
Go 20 0.05 0.00 0.00 0.00 0.00 0.00 0.00
Haskell 30 0.00 0.30 0.00 0.00 0.00 0.00 0.00

MAPS ’23, December 3, 2023, San Francisco, CA, USA Akshay Sood, Keara Hill, Kimble D. Houck, Zachary P. Fry, and Jonathan Dorn

(a)Model performance for predicting relowering success. (b) Model performance for predicting AFL success.

Figure 2: Performance of logistic regression models across multiple rewriters for (a) relowering and (b) AFL prediction tasks,
showing comparisons between models trained on C/C++-only programs and models trained on all languages. Both types of
models are evaluated on all languages. AUCs are computed as in Figure 1, and AUC values below 0.50 are omitted.

(a)Model performance for predicting relowering success. (b) Model performance for predicting AFL success.

Figure 3: Performance of logistic regression models across multiple rewriters for (a) relowering and (b) AFL prediction tasks,
showing comparisons between models trained on features from Schulte et al. [14] and the set of all features listed in Table 3.
AUCs are computed as in Figure 1, and AUC values below 0.50 are omitted.

performance is affected by language-specific characteristics of the
binaries.

To better understand the reasons behind this variation, we com-
pare the performance of logistic regression models trained on pro-
grams in all languages with models trained on programs in C/C++
only. If the source language has little or no effect on rewriting per-
formance, we might expect models trained on programs in C/C++
to generalize equally well on both C/C++ and non-C/C++ programs.

Figures 2a and 2b show model performance for predicting relow-
ering and AFL success, respectively. For all the rewriters examined,
models that are trained on programs in all languages perform bet-
ter than models that are trained on C/C++ programs only, when
evaluated on programs in all languages. This suggests that certain
characteristics of programs in non-C/C++ languages may provide
novel information for modeling these languages, and that variations
in rewriting ability may be associated with these characteristics.

4.3 Identifying Important Features
To understand the impact of the extracted features shown in Table 3,
we compare the performance of models trained on the entire set of
extracted featureswithmodels trained on the baseline set of features
from Schulte et al. [14]. Figures 3a and 3b show model performance
for predicting relowering and AFL success, respectively. For some
rewriters (e.g., ddisasm), models that are trained on all features
perform significantly better than models trained on the baseline
features, suggesting that we are able to identify salient properties
of the binaries that are not captured by the baseline features for
these rewriters.

In order to identify the features that are most useful for predict-
ing rewriting success, we further examine feature coefficients in the
trained logistic regression models. The magnitude of a given fea-
ture’s coefficient serves as an indicator of the feature’s importance
to the model, while the sign of the coefficient indicates whether
the feature is positively or negatively correlated with predicting

Predicting the Success of x86-64 Binary Rewriters MAPS ’23, December 3, 2023, San Francisco, CA, USA

Figure 4: Violin plots showing the distribution of feature co-
efficients for logistic regression models trained to predict
relowering success for ddisasm. Quartiles are indicated us-
ing miniature box plots inside the violins, shown in black.
Features from Schulte et al. [14] are only shown when in-
cluded in the models.

rewriter success. Figure 4 shows distributions of feature coefficients
for models trained to predict relowering success for ddisasm. Fea-
tures text_section_size, uses_multithreading,
num_nonstandard_sections, uses_nonstandard_section, and
uses_setjmp are negatively associated with predicting relowering
success, suggesting that binaries that are larger, use multithreading,
include non-standard sections, or have unusual control flow are
harder for ddisasm to rewrite. On the other hand, coefficients for
is_stripped and is_pie have small variance and are centered
around zero, suggesting that ddisasm is robust to binaries that are
stripped or non-PIE, unlike other rewriters such as retrowrite [14].
Features with larger variance that are centered at or near zero,
e.g., is_debug_section_present, may indicate overfitting. Coeffi-
cients for certain features tend to change signs going from baseline
features to all features, e.g., has_section_plt_got. A possible ex-
planation for this is that new features that are correlated with
has_section_plt_got may provide the model with some infor-
mation that was previously extracted from has_section_plt_got,
leading to the model extracting novel information from
has_section_plt_got when all features are present.

5 DISCUSSION
We make the following observations based on these results:

• We are able to predict rewriting success with a high level
of performance. The performance varies by rewriter, choice
of model, and rewriting task, with AUC ≥ 0.80 for the best-
performing models for all rewriters and prediction tasks, and
AUC ≥ 0.95 in many cases.

• No model consistently outperforms other models across the
range of rewriters and rewriting tasks. Simpler and more
interpretable logistic regression models perform comparably
to more complex, black-box models for predicting binary
rewriting success. This suggests that richer representations
do not yield additional predictive value for this task, given
features that are largely extracted from parsing the binaries
and for the amount of data available.

• For most rewriters, models trained on programs in all lan-
guages perform better than models trained on C/C++ pro-
grams only, suggesting that both rewriting performance, and
the performance of models trained to predict rewriting suc-
cess, are affected by language-specific characteristics of the
binaries. Since rewriters are predominantly tested on COTS
binaries compiled from programs in C/C++, investigating
features of binaries specific to non-C/C++ languages may be
a promising line of research for improving cross-language
performance of binary rewriters.

• The set of features that we extract from the binaries provides
sufficient predictive value to train performant models for
predicting rewriting success. In many cases, our features out-
perform the set of baseline features from Schulte et al. [14].
Feature importance analysis of the trained models shows
which features are most useful for predicting rewriting suc-
cess. These features may be used to elicit strengths and weak-
nesses of different rewriters in order to drive improvements
in rewriting methods.

6 CONCLUSION
In this work, we investigated the problem of predicting the success
of binary rewriters across a diverse set of binaries. We compiled
binaries using various compilation configurations for a set of 58
benchmark programs written in a range of popular languages. We
collected data on rewriting success for these binaries using a repre-
sentative set of tools for two rewriting tasks, relowering and AFL++
instrumentation.

We extracted features from the binaries by parsing them and
performing fast linear disassembly. We used these features to train
models to predict rewriting success at both the aforementioned
tasks. We performed a comparative evaluation of models of varying
complexity for these tasks. We examined rewriting success rates on
binaries compiled from different source languages, and investigated
the performance of models both with and without access to lan-
guages other than C/C++ in the training data. Finally, we examined
the predictive value of our features in comparison to a baseline set
of features and conducted a feature importance analysis to identify
features that are most useful for predicting the success of a given
rewriter.

Our results show that we were able to learn performant mod-
els for predicting rewriting success, and that simpler, more inter-
pretable models performed comparably to more complex models.

MAPS ’23, December 3, 2023, San Francisco, CA, USA Akshay Sood, Keara Hill, Kimble D. Houck, Zachary P. Fry, and Jonathan Dorn

We observed that models trained on programs in all languages
performed better than models trained only on C/C++ programs,
suggesting that both rewriting and model performance are affected
by language-specific characteristics of the binaries. We showed
that models trained using our feature set performed better than
those trained on the baseline set of features for many rewriters. By
analyzing these models, we were also able to identify salient binary
features associated with rewriting ability for a given rewriter. Ulti-
mately, the developed models can be used to aid users’ decisions
related to binary rewriters in diverse contexts, speeding up the
vetting process for popular transforms.

7 ACKNOWLEDGMENTS
We would like to thank Vlad Folts for his help in data collection.
This material is based upon work supported by the Office of Naval
Research (ONR) under Contract No. N00014-21-C-1032. Any opin-
ions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the ONR.

REFERENCES
[1] AFL++. 2023. The AFL++ Fuzzing Framework. https://aflplus.plus/.
[2] Hyrum S. Anderson and Phil Roth. 2018. EMBER: An Open Dataset for Training

Static PE Malware Machine Learning Models. https://doi.org/10.48550/arXiv.
1804.04637 arXiv:cs/1804.04637

[3] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305.

[4] Andrew R. Bernat and Barton P. Miller. 2011. Anywhere, Any-Time Binary
Instrumentation. In Proceedings of the 10th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools (PASTE ’11). Association for Computing
Machinery, New York, NY, USA, 9–16. https://doi.org/10.1145/2024569.2024572

[5] Capstone. 2023. The Ultimate Disassembly Framework. https://www.capstone-
engine.org/.

[6] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
RetroWrite: Statically Instrumenting COTS Binaries for Fuzzing and Sanitiza-
tion. In 2020 IEEE Symposium on Security and Privacy (SP). 1497–1511. https:
//doi.org/10.1109/SP40000.2020.00009

[7] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. 2020. Binary Rewrit-
ing without Control Flow Recovery. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 151–163. https:
//doi.org/10.1145/3385412.3385972

[8] Antonio Flores-Montoya and Eric Schulte. 2020. Datalog Disassembly. In 29th
USENIX Security Symposium (USENIX Security 20). 1075–1092.

[9] GrammaTech. 2023. Lifter Eval. https://gitlab.com/GrammaTech/lifter-eval.
[10] William H. Hawkins, Jason D. Hiser, Michele Co, Anh Nguyen-Tuong, and JackW.

Davidson. 2017. Zipr: Efficient Static Binary Rewriting for Security. In 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 559–566. https://doi.org/10.1109/DSN.2017.27

[11] Galois Inc. 2023. Reopt. https://github.com/GaloisInc/reopt
[12] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio,

Mohamad Mansouri, and Davide Balzarotti. 2022. HowMachine Learning Is Solv-
ing the Binary Function Similarity Problem. In 31st USENIX Security Symposium
(USENIX Security 22). 2099–2116.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[14] Eric Schulte, Michael D. Brown, and Vlad Folts. 2022. A Broad Comparative
Evaluation of X86-64 Binary Rewriters. In Cyber Security Experimentation and Test
Workshop. 129–144. https://doi.org/10.1145/3546096.3546112 arXiv:cs/2203.13231

[15] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks. In 24th USENIX Security Symposium
(USENIX Security 15). 611–626.

[16] Romain Thomas. 2017. LIEF - Library to Instrument Executable Formats.
https://lief.quarkslab.com/.

[17] VideoLan. 2006. VLC media player. https://www.videolan.org/vlc/index.html
[18] Matthias Wenzl, Georg Merzdovnik, Johanna Ullrich, and Edgar Weippl. 2019.

From Hack to Elaborate Technique—A Survey on Binary Rewriting. Comput.
Surveys 52, 3 (June 2019), 49:1–49:37. https://doi.org/10.1145/3316415

[19] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis. 2020.
Egalito: Layout-Agnostic Binary Recompilation. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’20). Association for Computing Machinery, New
York, NY, USA, 133–147. https://doi.org/10.1145/3373376.3378470

[20] Sheng Yu, Yu Qu, Xunchao Hu, and Heng Yin. 2022. DeepDi: Learning a Relational
Graph Convolutional Network Model on Instructions for Fast and Accurate
Disassembly. In 31st USENIX Security Symposium (USENIX Security 22). 2709–
2725.

https://doi.org/10.48550/arXiv.1804.04637
https://doi.org/10.48550/arXiv.1804.04637
https://arxiv.org/abs/cs/1804.04637
https://doi.org/10.1145/2024569.2024572
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1145/3385412.3385972
https://doi.org/10.1109/DSN.2017.27
https://github.com/GaloisInc/reopt
https://doi.org/10.1145/3546096.3546112
https://arxiv.org/abs/cs/2203.13231
https://www.videolan.org/vlc/index.html
https://doi.org/10.1145/3316415
https://doi.org/10.1145/3373376.3378470

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data
	3.2 Model Training

	4 Experimental Results
	4.1 Comparative Evaluation of Models
	4.2 Effect of Languages on Rewriting Success and Predictive Performance
	4.3 Identifying Important Features

	5 Discussion
	6 Conclusion
	7 Acknowledgments
	References

