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specification program

Program synthesizer



Program synthesizer

Synquid. Polikarpova 2016

Specification = Dependent Types
(types + logical predicates)



“Cornell University” ->

“C.U.”

“Eidgenössische Technische Hochschule” ->

“E.T.H.”

“.”.join(x.split())

Program synthesizer

Eg, FlashFill. Gulwani 2012

Specification = Input-Outputs



y = slope*x + … intercept

Program synthesizer

Specification = Partially completed program

eg, Copilot, Codex



# open file and loop over lines

with open(file, “r”) as handle:
for ln in file:

Program synthesizer

Specification = Partially completed program

eg, Copilot, Codex



# flatten a list called `xss`

[x 

 for xs in xss

 for x in xs ]

Program synthesizer

Specification = Partially completed program

eg, Copilot, Codex



How we evaluate program synthesizers



How we evaluate program synthesizers



How we evaluate program synthesizers:

Success Rate, controlling for compute time



How we use program synthesizers



How we use program synthesizers





Task:

Predict whether the synthesizer should be trusted to 
solve a particular problem

specification

Program synthesizer

I can/can’t solve that





Trust in Traditional Program Synthesis



Trust in Traditional Program Synthesis

program ⊢ specification



Trust in Neural Program Synthesis

program ⊢ specification (?)



Trust in Neural Program Synthesis

program ⊢ natural language (?)



Trust in Neural Program Synthesis

program ⊢ natural language (X)



Trust in Neural Program Synthesis

Neural network defines:

Pr[ program | natural language ]



The Trust Conundrum

Trust ~ Verification

program ⊢ specification

My specification is informal…

…because train data is messy natural code

And I can’t verify against an informal specification



How do people build trust?



Speculyzer



Speculyzer



Speculyzer



Speculyzer



Speculyzer



Speculyzer

cf. CodeT [Chen et al. ‘22 ICLR]



Pr[ prog correct ]



Pr[ prog correct ]
+ Satisfies many specs?
+ Many other progs satisfy same specs?
 - Lots of different prog behaviors?
 - Low logits?

Feature extraction Binary classification
(logistic regression)



Speculyzer can decline to solve problems when uncertain

specification I can/can’t solve that



Speculyzer can decline to solve problems when uncertain

specification I can/can’t solve that

∃ prog : 

   Pr[ prog correct] > 1-ε



Declining to solve problems when uncertain

Precision: % completions which are correctR
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Steps toward formalization



Reality Check:

No neural net english->code system will achieve 0% errors



Task:

Generate tests that explain the generated code, so if it is 
incorrect, the user can discard it





How to communicate what program does so that the user can accept/reject it?

program  ⊢ specification



Out-of-the-box LLM



Out-of-the-box LLM



How to communicate what program does so that the user can accepted/reject it?

argmax  objective_function(prog, spec)
prog ⊢spec

Pick the thing which is true about the program
But which is not true about most other programs 
“distinguishing”, “selective”







Raw LLM Top of 100 LLM samples

Worst of 100 LLM samples



Speculyzer Recap

Task: Predict if the synthesizer should be trusted

Task: Generate informative test(s) that explain the generated code



What could trust unlock?





<science_fiction>

</science_fiction>



<science_fiction>

</science_fiction>



<science_fiction>

</science_fiction>



Task:

Neurosymbolic programming for perception and graphics

Joint work with Hao Tang!
ICML ‘23



Domain Specific Languages,
Pre-provided Symbols

Tian et al. 2019, ICLR



Flexible Symbols

Feinman & Lake 2021



Flexible, Learnable Symbols, AND
Powerful, Program-Like Compositional Processing?

sub-symbolic     symbols

ProgramNeural Network



Flexible, Learnable Symbols, AND
Powerful, Program-Like Compositional Processing?
(generative)

sub-symbolic     symbols

ProgramNeural Network



Generative Example
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Compositional 
program
(discrete)



Discriminative Example



Learning Problem

sub-symbolic     symbols

ProgramNeural Network



Learning Problem

Sub-symbolic
observed     symbols

ProgramNeural Network

Output
observed



Learning Problem

Sub-symbolic
observed

    symbols
    latent

Program
Latent structure

Neural Network
latent weights

Output
observed



Challenges

Mixed Discrete-Continuous

Underconstrained

Symbol Grounding Problem



Opportunities

Compositional generalization from raw perceptual input

Systems that learn their own symbols!

Synthesizing neurosymbolic programs



Guiding Principles:
Make Everything Continuous. Use Gradient Descent.

Sub-symbolic
observed

    symbols
    latent

Program
Latent structure

Neural Network
latent weights

Output
observed

continuous parameters



Relaxing discrete program spaces

Many approaches:

Terpret [Gaunt et al 2016]

dILP [Evans et al 2017]

EQLNet [Sahoo et al 2018]

DiffLog [Si et al 2019]

…

ROAP, this work [Tang et al 2023]



Relaxing discrete program spaces

Many approaches:

Terpret [Gaunt et al 2016]

dILP [Evans et al 2017]

EQLNet [Sahoo et al 2018]

DiffLog [Si et al 2019]

…

ROAP, this work [Tang et al 2023]

Program Interpreter,
Domain {0,1}^K

Program Output



Relaxing discrete program spaces

Many approaches:

Terpret [Gaunt et al 2016]

dILP [Evans et al 2017]

EQLNet [Sahoo et al 2018]

DiffLog [Si et al 2019]

…

ROAP, this work [Tang et al 2023]

Program Interpreter,
Domain [0,1]^K

Program Output



A Standard Deep Learning Problem

Sub-symbolic
observed

    symbols
    latent

Program
Latent continuous parameters

Z

Neural Network
latent weights

 Ө

Output
observed



Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer



Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer



Under-constrained Optimization Problem

Sub-symbolic
observed

    symbols
    latent

Program
Latent continuous parameters

Z

Neural Network
latent weights

 Ө

Output
observed



Under-constrained Optimization Problem

Sub-symbolic
observed

    symbols
    latent

Program
Latent continuous parameters

Z: Identity Function

Neural Network
latent weights

 Ө

Output
observed



Under-constrained Optimization Problem:
Therefore, Multitask

Sub-symbolic
observed

Neural Network
latent weights

 Ө

Output
observed

Output
observed

Output
observed

Z

Z

Z



Under-constrained Optimization Problem:
Therefore, Multitask



Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer



Overparameterization

Neural nets converge with gradient descent due to massively overparametrization

Analog of overparameterization for programs: Give it more lines of code

Actual program length
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Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer



New regularizer for relaxed programs:
Softly penalized expected program length

Overparameterize: Converge… to long, bloated, overfit programs



Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking, which allows amortized program synthesis
2. Overparameterization
3. Special regularizer



Amortized Program Synthesis: Learning to Generate Programs

Program Interpreter,
Domain [0,1]^K

Program Output

Program Z

Description of desired program



Justifying Each Trick

1. Need multitasking in order to force non-degenerate solutions, 

imposes extra constraints

2. Need overparameterization for gradient descent to find programs

3. Overparametrization causes bad programs => Need special regularizer

4. Multitasking allows learning to find programs



Justifying Each Trick

1. Need multitasking in order to force non-degenerate solutions, 

imposes extra constraints

2. Need overparameterization for gradient descent to find programs

3. Overparametrization causes bad programs => Need special regularizer

4. Multitasking allows learning to find programs



Constraints necessary,
But There Exists More Than One Kind of Constraint



Results: Discovering Number Concepts



Results: Discovering Number Concepts



Results: Discovering Number Concepts

Symbol 
grounder



Results: 3D Reconstruction



Results: 3D Reconstruction



Results: 3D Reconstruction

Neural part library



Lessons

Symbol Grounding can emerge from the interaction of different constraints

Doesn’t need natural language as scaffolding

Gradient descent works for neural nets because of “gradient gadgets”

Need to invent new gadgets for neurosymbolic programs



the end!



Learning to make programming problems

Simplified setting: Programs take no arguments and their output is the spec

LOGO/TurtleSymbolic Regression

for w in range(6):
  s0=get_state()
  draw_square(w)
  reset_state(s0)



Simplified Setting

for w in range(6):
  s0=get_state()
  draw_square(w)
  reset_state(s0)


