
Non-Canonical Tasks in
Synthesis and Learning

Kevin Ellis
Joint with Darren Key, Wen-Ding Li, Hao Tang
Cornell University
MAPS Symposium 2023, FSE

specification program

Program synthesizer

Program synthesizer

Synquid. Polikarpova 2016

Specification = Dependent Types
(types + logical predicates)

“Cornell University” ->

“C.U.”

“Eidgenössische Technische Hochschule” ->

“E.T.H.”

“.”.join(x.split())

Program synthesizer

Eg, FlashFill. Gulwani 2012

Specification = Input-Outputs

y = slope*x + … intercept

Program synthesizer

Specification = Partially completed program

eg, Copilot, Codex

open file and loop over lines

with open(file, “r”) as handle:
for ln in file:

Program synthesizer

Specification = Partially completed program

eg, Copilot, Codex

flatten a list called `xss`

[x

 for xs in xss

 for x in xs]

Program synthesizer

Specification = Partially completed program

eg, Copilot, Codex

How we evaluate program synthesizers

How we evaluate program synthesizers

How we evaluate program synthesizers:

Success Rate, controlling for compute time

How we use program synthesizers

How we use program synthesizers

Task:

Predict whether the synthesizer should be trusted to
solve a particular problem

specification

Program synthesizer

I can/can’t solve that

Trust in Traditional Program Synthesis

Trust in Traditional Program Synthesis

program ⊢ specification

Trust in Neural Program Synthesis

program ⊢ specification (?)

Trust in Neural Program Synthesis

program ⊢ natural language (?)

Trust in Neural Program Synthesis

program ⊢ natural language (X)

Trust in Neural Program Synthesis

Neural network defines:

Pr[program | natural language]

The Trust Conundrum

Trust ~ Verification

program ⊢ specification

My specification is informal…

…because train data is messy natural code

And I can’t verify against an informal specification

How do people build trust?

Speculyzer

Speculyzer

Speculyzer

Speculyzer

Speculyzer

Speculyzer

cf. CodeT [Chen et al. ‘22 ICLR]

Pr[prog correct]

Pr[prog correct]
+ Satisfies many specs?
+ Many other progs satisfy same specs?
 - Lots of different prog behaviors?
 - Low logits?

Feature extraction Binary classification
(logistic regression)

Speculyzer can decline to solve problems when uncertain

specification I can/can’t solve that

Speculyzer can decline to solve problems when uncertain

specification I can/can’t solve that

∃ prog :

 Pr[prog correct] > 1-ε

Declining to solve problems when uncertain

Precision: % completions which are correctR
ec

al
l:

%
 p

ro
bl

em
s

w
e

pr
ov

id
e

a
co

m
pl

et
io

n
ZERO mistakes
42% coverage

Steps toward formalization

Reality Check:

No neural net english->code system will achieve 0% errors

Task:

Generate tests that explain the generated code, so if it is
incorrect, the user can discard it

How to communicate what program does so that the user can accept/reject it?

program ⊢ specification

Out-of-the-box LLM

Out-of-the-box LLM

How to communicate what program does so that the user can accepted/reject it?

argmax objective_function(prog, spec)
prog ⊢spec

Pick the thing which is true about the program
But which is not true about most other programs
“distinguishing”, “selective”

Raw LLM Top of 100 LLM samples

Worst of 100 LLM samples

Speculyzer Recap

Task: Predict if the synthesizer should be trusted

Task: Generate informative test(s) that explain the generated code

What could trust unlock?

<science_fiction>

</science_fiction>

<science_fiction>

</science_fiction>

<science_fiction>

</science_fiction>

Task:

Neurosymbolic programming for perception and graphics

Joint work with Hao Tang!
ICML ‘23

Domain Specific Languages,
Pre-provided Symbols

Tian et al. 2019, ICLR

Flexible Symbols

Feinman & Lake 2021

Flexible, Learnable Symbols, AND
Powerful, Program-Like Compositional Processing?

sub-symbolic symbols

ProgramNeural Network

Flexible, Learnable Symbols, AND
Powerful, Program-Like Compositional Processing?
(generative)

sub-symbolic symbols

ProgramNeural Network

Generative Example
N

eu
ra

l p
ar

ts
(c

on
ti

n
u

ou
s)

Compositional
program
(discrete)

Discriminative Example

Learning Problem

sub-symbolic symbols

ProgramNeural Network

Learning Problem

Sub-symbolic
observed symbols

ProgramNeural Network

Output
observed

Learning Problem

Sub-symbolic
observed

 symbols
 latent

Program
Latent structure

Neural Network
latent weights

Output
observed

Challenges

Mixed Discrete-Continuous

Underconstrained

Symbol Grounding Problem

Opportunities

Compositional generalization from raw perceptual input

Systems that learn their own symbols!

Synthesizing neurosymbolic programs

Guiding Principles:
Make Everything Continuous. Use Gradient Descent.

Sub-symbolic
observed

 symbols
 latent

Program
Latent structure

Neural Network
latent weights

Output
observed

continuous parameters

Relaxing discrete program spaces

Many approaches:

Terpret [Gaunt et al 2016]

dILP [Evans et al 2017]

EQLNet [Sahoo et al 2018]

DiffLog [Si et al 2019]

…

ROAP, this work [Tang et al 2023]

Relaxing discrete program spaces

Many approaches:

Terpret [Gaunt et al 2016]

dILP [Evans et al 2017]

EQLNet [Sahoo et al 2018]

DiffLog [Si et al 2019]

…

ROAP, this work [Tang et al 2023]

Program Interpreter,
Domain {0,1}^K

Program Output

Relaxing discrete program spaces

Many approaches:

Terpret [Gaunt et al 2016]

dILP [Evans et al 2017]

EQLNet [Sahoo et al 2018]

DiffLog [Si et al 2019]

…

ROAP, this work [Tang et al 2023]

Program Interpreter,
Domain [0,1]^K

Program Output

A Standard Deep Learning Problem

Sub-symbolic
observed

 symbols
 latent

Program
Latent continuous parameters

Z

Neural Network
latent weights

 Ө

Output
observed

Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer

Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer

Under-constrained Optimization Problem

Sub-symbolic
observed

 symbols
 latent

Program
Latent continuous parameters

Z

Neural Network
latent weights

 Ө

Output
observed

Under-constrained Optimization Problem

Sub-symbolic
observed

 symbols
 latent

Program
Latent continuous parameters

Z: Identity Function

Neural Network
latent weights

 Ө

Output
observed

Under-constrained Optimization Problem:
Therefore, Multitask

Sub-symbolic
observed

Neural Network
latent weights

 Ө

Output
observed

Output
observed

Output
observed

Z

Z

Z

Under-constrained Optimization Problem:
Therefore, Multitask

Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer

Overparameterization

Neural nets converge with gradient descent due to massively overparametrization

Analog of overparameterization for programs: Give it more lines of code

Actual program length

Pa
ra

m
et

er
iz

ed
 li

n
es

 o
f

co
de

Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking
2. Overparameterization
3. Special regularizer

New regularizer for relaxed programs:
Softly penalized expected program length

Overparameterize: Converge… to long, bloated, overfit programs

Out-of-the-box gradient descent doesn’t work

Need extra tricks:

1. Multitasking, which allows amortized program synthesis
2. Overparameterization
3. Special regularizer

Amortized Program Synthesis: Learning to Generate Programs

Program Interpreter,
Domain [0,1]^K

Program Output

Program Z

Description of desired program

Justifying Each Trick

1. Need multitasking in order to force non-degenerate solutions,

imposes extra constraints

2. Need overparameterization for gradient descent to find programs

3. Overparametrization causes bad programs => Need special regularizer

4. Multitasking allows learning to find programs

Justifying Each Trick

1. Need multitasking in order to force non-degenerate solutions,

imposes extra constraints

2. Need overparameterization for gradient descent to find programs

3. Overparametrization causes bad programs => Need special regularizer

4. Multitasking allows learning to find programs

Constraints necessary,
But There Exists More Than One Kind of Constraint

Results: Discovering Number Concepts

Results: Discovering Number Concepts

Results: Discovering Number Concepts

Symbol
grounder

Results: 3D Reconstruction

Results: 3D Reconstruction

Results: 3D Reconstruction

Neural part library

Lessons

Symbol Grounding can emerge from the interaction of different constraints

Doesn’t need natural language as scaffolding

Gradient descent works for neural nets because of “gradient gadgets”

Need to invent new gadgets for neurosymbolic programs

the end!

Learning to make programming problems

Simplified setting: Programs take no arguments and their output is the spec

LOGO/TurtleSymbolic Regression

for w in range(6):
 s0=get_state()
 draw_square(w)
 reset_state(s0)

Simplified Setting

for w in range(6):
 s0=get_state()
 draw_square(w)
 reset_state(s0)

