Large Language Models Should Ask Clarifying Questions to
Increase Confidence in Generated Code’

Jie JW Wu
George Washington University
jlewu@gwu.edu

ABSTRACT

Large language models (LLMs) have significantly improved the
ability to perform tasks in the field of code generation. However,
there is still a gap between LLMs being capable coders and being
top-tier software engineers. Based on the observation that top-
level software engineers often ask clarifying questions to reduce
ambiguity in both requirements and coding solutions, I argue that
the same should be applied to LLMs for code generation tasks.
By asking probing questions in various topics before generating
the final code, the challenges of programming with LLMs, such as
unclear intent specification, lack of computational thinking, and
undesired code quality, may be alleviated. This, in turn, increases
confidence in the generated code. In this work, I explore how to
leverage better communication skills to achieve greater confidence
in generated code. I propose a communication-centered process that
uses an LLM-generated communicator to identify issues with high
ambiguity or low confidence in problem descriptions and generated
code. I then ask clarifying questions to obtain responses from users
for refining the code.

CCS CONCEPTS

« Software and its engineering — Designing software; - Com-
puting methodologies — Generative and developmental
approaches.

KEYWORDS

Software Development, Large Language Models, Code Generation

“Asking a good question can be valuable in and of
itself, irrespective of the answer. It communicates
your respect for the other person”

- Adapted from the Iowa Peace Institute Message

1 INTRODUCTION

Large language models (LLMs) [9, 33, 36, 38], such as OpenAI’s
Codex [7], AlphaCode [17], and CodeGen [24], possess significant
capabilities to generate code snippets from natural language re-
quirements. However, there are several reported issues with LLMs,
including problems with intent specification, problem decomposi-
tion [29], code quality, and overconfidence [19, 20], as well as us-
ability [18]. These issues indicate that there is still a substantial gap
between an LLM as a programming assistant [1, 6, 28, 34, 44] and a
software engineer. As the responsibility of software developers en-
compasses more than just writing code, current LLMs cannot fully
replace professional software developers [4, 29]. At a high level, the

“This paper is accepted and presented at the 7th Annual Symposium on Machine
Programming (MAPS ’23), held on December 3, 2023 in San Francisco, CA, USA.

gap lies in several critical aspects of software development beyond
coding, such as effective communications, requirements, design,
domain knowledge, and the broader context of relevant projects
and components, etc [23, 31, 32, 35]. In this paper, I am interested
in applying the communication lens to inspect the gap, given that
effective communication is a critical capability that connects all
of the above-mentioned parts to coding. I study the following re-
search question: Does asking clarifying questions increase confidence
in ChatGPT-generated code?

With this question, let us take a step back to compare the com-
munications of LLMs and software developers. In the literature, the
level of communication skills is rarely emphasized or evaluated in
the field of code generation. The current LLMs are evaluated by
generating code in one or multiple attempts from one-off problem
descriptions, without further conversational inputs [2, 7, 17]. This
means when the input problem description is error-prone or in-
complete without full context, the model has to generate the code
without the chance to clarify questions that are necessary to ensure
the quality and correctness of the code. On the contrary, given a
software engineering task in real-world enterprises, professional de-
velopers use various ways of communication, such as asking more
questions in 1:1 conversations, group meetings, and Slack channels
to obtain more information and reduce ambiguity about the detailed
requirements, context of the projects, and the design alternatives.
Proactive and effective communication is a critical skill in prac-
tice for top-level software developers to accomplish their software
engineering tasks reliably with high quality [14, 21, 22, 27, 40].

Inspired by this behavior, in this work, I would like to study the
potential of LLMs from the dimension of effective communication
skills. As the first step toward this objective, I explore a process
centered around promoting effective communication to ask more
clarifying questions to refine the final generated code from LLMs.
The initial exploration via an empirical example indicates that
the communication-centered process is promising in boosting the
communication skills of LLMs for code generation tasks. Finally, I
provide conclusions and future work.

2 COMMUNICATION-CENTERED PROCESS

In this section, I describe the proposed communication-centered
process for code generation tasks. The communication-centered
process ultilizes two components - a coder and a communicator. The
visual illustration of the process is shown in Figure 1. The coder
takes the problem description and, optionally, the information pro-
vided by the communicator to generate the code. The communicator
review the problem descriptions and the code generated from pre-
vious iteration, then ask questions on whether certain parts are
identified as low confidence and need to be clarified or probed via
questions. Finally, the communicator sends back the responses from

https://orcid.org/0000-0002-7895-2023

Problem
description

2. Ask clarifying or probing questions

Wu

Coder (LLM)

Generated

a2

3. Get response from user

Figure 1: The visual illustration of the communication-centered process: the coder generates code according to the problem
description and the communicator’s information. The communicator detects the parts with low confidence where communica-
tion may help to get more information from the user. Then the communicator asks clarifying questions and gets the response.
Finally, the response is sent back to the coder to refine the generated code.

users to the coder to refine the generated code. This process is re-
peated until some condition is met. Each of these two components
can be implemented using a LLM.

Inspired by how the high-quality code is produced by top-level
software developers, in the LLM-based code generation, my main
idea for the communicator is that it should find the parts from the
code and description that are typically of higher uncertainty and
low confidence. These parts can be improved by getting more useful
information from users via good clarifying and probing questions.
The communicator asks questions focused on various aspects of
software development concerning the high standards of final output
code, such as intent specification, intent clarification, requirement
disambiguity, coding style etc. I use an example in the next section
to illustrate how the coder works with the communicator in detail.

3 EXAMPLE USAGE

I showcase a practical example using the communication-centered
process for code generation tasks. In this example, I use ChatGPT
3.5 as the LLM for the coder and the communicator. As shown in
Figure 2, a user is looking for a code snippet to return n-th Fibonacci
number. Within the process, the coder LLM first generated an initial
code snippet. From the initial code output that, although ChatGPT
3.5 as the coder generated the code as required, several topics
on this can be further elaborated and discussed. In this case, the
communicator analyzed the problem description and the initial
code to generate a list of clarifying questions. The top question is
concerned with the negative input, which was not mentioned in
the problem description. The user responded the question to set
the expectation on the case of the negative input. Then, the coder
refined the code with that additional information. I only use one
iteration in the example, but in theory this loop can continue until
some criteria is met.

The key part of the process is how the communicator interacts
with the user and the coder. For the communicator, I use ChatGPT
3.5 as the LLM, which is same as the coder. The communicator uses
zero-shot prompting to generate the clarifying questions from the
problem description and the code from the previous iteration. The
example of prompt from Figure 2 is described below.

You are an expert in software engineering. You will be given
the problem description and current code of a coding task. You
will generate a list of clarifying questions that may result in
refining the code.

Problem Description
"write a function to return n-th Fibonacci number. n is an int "

Generated Code From Previous Iteration
def fibonacci(n):
ifn <=0:
return 0
elif n == 1:
return 1
fib = [0, 1]
for i in range(2, n + 1):
next_fib = fib[i - 1] + fib[i - 2]
fib.append(next_fib)
return fib[n]

The output list of clarifying questions for the communicator in
the above example is shown in Table 1. With the simple zero-shot
prompt, the communicator is already able to automatically cover
a number of topics that deserve asking questions. As the future

LLMs Should Ask Clarifying Questions to Increase Confidence in Generated Code

def fibonacci(n):

ifn<=0:
I 1 return 0

Write a function to return n-th elifn==1:
Fibonacci number. n is an int return 1
fib =10, 1]

Throw an exception on
negative inputs.

3 Communicator (LLM)

foriinrange(2, n +1):
next_fib = fib[i - 1] + fib]i - 2]
fib.append(next_fib)

return fib[n]

raise ValueError("Input must be
a non-negative integer.")
elifn==0:
return 0
elifn==1:
return 1
fib =0, 1]
foriinrange(2,n+1):
next_fib = fibli - 1] + fib]i - 2]

How should the function handle
negative values of n? Should it

or handle negative inputs in a
specific way?

return an error, raise an exception,

fib.append(next_fib)
Veturn fib[n] j

ﬂf fibonacci(n): \
ifn<0:

W) e e] | e e G

==
\

\

e e—— ——— ———— — —— — — — — — — —

Communication-Centered Process

Figure 2: An example of the communication-centered process.

extension, one could modify the prompt to focus on topics that
are more helpful for their customized usage or for the quality of
generated code. For example, topics such as code context, coding
style, non-functional requirements, code analysis, explanation are
mentioned as the current weakness of the code output of LLMs [18].
So, these topics can be better prioritized in the prompt of the com-
municator. From this mere example, I see big potential that boosting
communication skills can lead to improvements of the final code
output in several topics such as negative input, documentation, etc.

4 BACKGROUND AND RELATED WORK

Code Generation with Large Language Models. In recent years,
the field of code generation has seen a significant shift with the
large language models. For example, Codex [7], fine-tuned on GPT-
3 [5] on a large corpus of source code data, is capable of generating
code for 47/164 problems in the HumanEval dataset in single run,
a benchmark for code generation task. Codex became the core
model for the Copilot [46], an Al-powered coding assistant devel-
oped by GitHub. After Codex, a couple of models similar to Codex
but with smaller size were then developed, including GPT-]J [37],
CodeParrot [8], PolyCoder [42]. AlphaCode [17], with size com-
parable to Codex, was trained on Github data and fine-tuned on
competition-level programing problems. It exceeded half of the com-
petitors in coding competitions of CodeForces, a well-known online
competitive programming platform. CodeGen [24] was trained on
both natural language and programming language data for code
generations with multi-turn prompts. However, the level of commu-
nication skills of these models are not emphasized and evaluated.
These models are evaluated by generating code in one or multi-
ple attempts from one-off problem descriptions, without further
information from conversations. Therefore, when the input prob-
lem description is error-prone or incomplete, the model still has to

generate the code without the chance to clarify critical questions.
My work serves as an exploration to address this usability problem.

Self-Correct Large Language Models. Recently, a promising
approach to improve the output efficiency of large language models
is self-correction [26]. In self-correction approach, the LLM uses
the feedback guided or prompted by itself to refine their results.
One popular category of work uses human feedback to refine their
results directly [10, 11, 16, 25, 30]. Other studies employed different
strageties to self-correct LLMs using automated feedback such as
self-training [3, 13], generate-then-rank [12, 39], feedback-guided
decoding [41, 43], iterative post-hoc revision [15, 45], etc. My work
in this paper is also under the category of self-correction using
both human feedback and automated feedback, but with a new
perspective of improving communication skills for code generation
tasks.

5 CONCLUSION AND FUTURE WORK

In this exploratory paper, I showed an initial step on the problem
of how to increase the communication skills of LLMs to elevate the
final generated code via clarifying and probing questions. I argue
that the proficiency of communication skills of LLMs is necessary
for generating code with high standards. Elevated communication
skills should be viewed as an important factor toward bridging the
gap between LLMs and top-notch software developers. Specifically,
this effort will not only increase confidence of generated code, but
also gain the trust of users using them as a programmin assistant.
Although it needs additional efforts of conversational input from
users, I believe it is still necessary and worthwhile. As a first step
toward this effort, I explored a communication-centered process
that ultilizes a coder LLM and a communicator LLM that work
together to ask clarifying questions and refine the generated code.

Topic

Clarifying Questions Generated by the Communicator LLM

Input Validation

Should input validation be part of the function?

If so, what should be done if n is not an integer?

Error Handling

How should errors be handled if n is not a valid integer or if it’s negative?

Should the function raise exceptions, return error codes, or follow a different
error-handling strategy?

Performance Requirements

Are there any performance requirements or constraints for this function?

Is there a need for optimizing the function for efficiency, especially for large
values of n?

Function Signature

Are there any specific naming conventions or requirements for the function
name and parameters?

Should the function take any additional parameters, options, or configuration
settings?

Output Type Is there a preferred return type for the function, such as an integer, a string, or
another data type?
Default Values Should the function provide default values for n if it’s not provided by the
caller?
Documentation What documentation standards should be followed for this function, such as
docstrings, comments, or external documentation?
Testing Are there specific test cases or test scenarios that should be considered when

testing the function?

Should the function be tested for edge cases, such as very large values of n?

Language and Environment

Is there a specific programming language or environment in which this function
should be implemented?

Are there any platform or compatibility requirements?

Algorithm Choice

Is there a preference for using a specific algorithm for calculating Fibonacci
numbers, such as an iterative or recursive approach?

Should the function allow for different algorithm choices or optimizations?

Usability and Extensibility

Should the function be designed for easy integration into other codebases?

Are there considerations for future extensions or modifications to the function?

Security Considerations

Are there any security considerations related to the input or output of the
function that need to be addressed?

Concurrency and Parallelism

Does the function need to support concurrent or parallel execution for improved
performance?

Version Control and Deployment

How will the function be versioned, deployed, and maintained in the software
development lifecycle?

Use Case and Context

What is the primary use case or context in which this function will be used?

Understanding the broader context can help in designing the function to meet
specific needs.

Table 1: Example of clarifying questions in the Communicator LLM from Figure 2.

Wu

LLMs Should Ask Clarifying Questions to Increase Confidence in Generated Code

By generating clarifying questions in prompts via the communica-
tor, there is hope to raise the capability of communication skills to
produce code with higher confidence. However, several challenges
still exist along this line of research and future work is needed, as
described below.

Evaluation benchmark of communication skills for LLM-
based code generation. This is needed to objectively quantify
the capability of communication skills of LLM on code generation
tasks and software engineering tasks. As aforementioned, the ex-
isting evaluation work of LLMs for code generation mainly focus
on solving algorithm problems without additional converstational
input. In my case, as future work, I will target at benchmark that
the reveal how effective is the communcation ability of the model.
For example, creating a dataset with blurred and noisy problem
descriptions that hide some critical information is an interesting
direction. In this setting, the model should ask the right questions
rather than directly generate low-quality code.

Improving communication skills of LLMs. Besides bench-
mark, techniques to further improve the communication skills of
LLMs can be the next steps as future work. Since the prompts are
critical to the success of LLMs, one of the important future work
is to design effective instructions w.r.t. communication skills. An-
other interesting angle is to study how to tune the model to switch
between under-communicating, effective-communcating and over-
communicating. I envision that different AI programming agents
in future will have various levels and styles of communication
ability. This work can be seen as the first step toward improving
communication skills of LLMs for code.

6 ACKNOWLEDGEMENTS

I would like to thank the anonymous reviewers for their construc-
tive feedback and suggestions. I also thank Vincent Hellendoorn for
his insightful feedback after presenting this work at MAPS 2023.

REFERENCES

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav. 2019. Code2Vec: Learning Dis-
tributed Representations of Code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1-29.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[3] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,
Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn
Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr,
Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosiute,
Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston,
Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-
Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac
Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish,
Tom Brown, and Jared Kaplan. 2022. Constitutional Al: Harmlessness from Al
Feedback. CoRR abs/2212.08073 (2022).

[4] Ali Borji. 2023. A categorical archive of chatgpt failures.
arXiv:2302.03494 (2023).

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[6] N.D.Bui, Y. Yu, and L. Jiang. 2021. InferCode: Self-supervised Learning of Code
Representations by Predicting Subtrees. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 1186-1197.

arXiv preprint

[11

[12

(14

[15

[16]

[17

[19

[20

[25]

[26

[27

(28]

[29

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Hugging Face. 2023. Codeparrot. https://huggingface.co/codeparrot/codeparrot
Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu,
and D. Jiang et al. 2020. CodeBERT: A Pre-trained Model for Programming and
Natural Languages. arXiv preprint arXiv:2002.08155 (2020).

Patrick Fernandes, Aman Madaan, Emmy Liu, Anténio Farinhas, Pedro Henrique
Martins, Amanda Bertsch, José G. C. de Souza, Shuyan Zhou, Tongshuang Wu,
Graham Neubig, and André F. T. Martins. 2023. Bridging the Gap: A Survey
on Integrating (Human) Feedback for Natural Language Generation. CoRR
abs/2305.00955 (2023).

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu,
Timo Ewalds, Maribeth Rauh, Laura Weidinger, Martin J. Chadwick, Phoebe
Thacker, Lucy Campbell-Gillingham, Jonathan Uesato, Po-Sen Huang, Ramona
Comanescu, Fan Yang, Abigail See, Sumanth Dathathri, Rory Greig, Charlie
Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona Mokra, Nicholas
Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac,
John Mellor, Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and
Geoffrey Irving. 2022. Improving Alignment of Dialogue Agents via Targeted
Human Judgements. CoRR abs/2209.14375 (2022).

Hangfeng He, Hongming Zhang, and Dan Roth. 2023. Rethinking with Retrieval:
Faithful Large Language Model Inference. CoRR abs/2301.00303 (2023).

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun
Yu, and Jiawei Han. 2022. Large Language Models Can Self-Improve. CoRR
abs/2210.11610 (2022).

Mehdi Jazayeri. 2004. The education of a software engineer. In Proceedings.
19th International Conference on Automated Software Engineering, 2004. IEEE,
xviii-xxvii.

Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. SelfEvolve: A Code Evolution
Framework via Large Language Models. CoRR abs/2306.02907 (2023).

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. 2018. Can
Neural Machine Translation Be Improved with User Feedback?. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies (NAACL-HLT).

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. 2022.
Competition-level code generation with alphacode. Science 378, 6624 (2022),
1092-1097.

Jenny T Liang, Chenyang Yang, and Brad A Myers. 2023. Understanding the
Usability of AT Programming Assistants. arXiv preprint arXiv:2303.17125 (2023).
Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li,
Xuan-Bach D Le, and David Lo. 2023. Refining ChatGPT-Generated Code: Char-
acterizing and Mitigating Code Quality Issues. arXiv preprint arXiv:2307.12596
(2023).

Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2023.
No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation
by ChatGPT. arXiv preprint arXiv:2308.04838 (2023).

Tan R McChesney and Seamus Gallagher. 2004. Communication and co-ordination
practices in software engineering projects. Information and Software Technology
46, 7 (2004), 473-489.

Ivan Mistrik, John Grundy, Andre Van der Hoek, and Jim Whitehead. 2010.
Collaborative software engineering: challenges and prospects. Springer.

N. Nguyen and S. Nadi. 2022. An Empirical Evaluation of GitHub Copilot’s
Code Suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1-5.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. 2022. Codegen: An open large language model
for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022.
Training Language Models to Follow Instructions with Human Feedback. In
Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurlPS).

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and
William Yang Wang. 2023. Automatically Correcting Large Language Models:
Surveying the landscape of diverse self-correction strategies. arXiv preprint
arXiv:2308.03188 (2023).

Roger S Pressman. 2005. Software engineering: a practitioner’s approach. Palgrave
macmillan.

M. Rabinovich, M. Stern, and D. Klein. 2017. Abstract Syntax Networks for Code
Generation and Semantic Parsing. arXiv preprint arXiv:1704.07535 (2017).
Advait Sarkar, Andrew D Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial

https://huggingface.co/codeparrot/codeparrot

[30]

[31]

[32]

[34]

[35]

[36]

[37]

intelligence? arXiv preprint arXiv:2208.06213 (2022).

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica
Chen, Kyunghyun Cho, and Ethan Perez. 2023. Training Language Models with
Language Feedback at Scale. CoRR abs/2303.16755 (2023).

M. L. Siddiq, S. H. Majumder, M. R. Mim, S. Jajodia, and J. C. Santos. 2022.
An Empirical Study of Code Smells in Transformer-Based Code Generation
Techniques. In 2022 IEEE 22nd International Working Conference on Source Code
Analysis and Manipulation (SCAM). 71-82.

D. Sobania, M. Briesch, and F. Rothlauf. 2022. Choose Your Programming Copilot:
A Comparison of the Program Synthesis Performance of GitHub Copilot and
Genetic Programming. In Proceedings of the Genetic and Evolutionary Computation
Conference. 1019-1027.

A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan. 2020. Intellicode Compose:
Code Generation Using Transformer. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 1433-1443.

M. Tufano, D. Drain, A. Svyatkovskiy, S. Deng, and N. Sundaresan. 2020. Unit
Test Case Generation with Transformers and Focal Context. arXiv preprint arXiv:
Software Engineering (2020).

P. Vaithilingam, T. Zhang, and E. L. Glassman. 2022. Expectation vs. Experience:
Evaluating the Usability of Code Generation Tools Powered by Large Language
Models. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts. 1-7.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and 1. Polosukhin. 2017. Attention is All You Need. In Advances in Neural
Information Processing Systems, Vol. 30.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 billion parameter autore-
gressive language model.

(38]

[39]

[40]

[41]

[43

[44]

[45]

[46

Wu

Y. Wang, W. Wang, S. Joty, and S. C. Hoi. 2021. CodeT5: Identifier-Aware Unified
Pre-trained Encoder-Decoder Models for Code Understanding and Generation.
arXiv preprint arXiv:2109.00859 (2021).

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Kang Liu, and Jun Zhao.
2023. Large Language Models Are Better Reasoners with Self-Verification. CoRR
abs/2212.09561 (2023).

Jim Whitehead. 2007. Collaboration in software engineering: A roadmap. In
Future of Software Engineering (FOSE’07). IEEE, 214-225.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, MinYen Kan, Junxian He, and
Qizhe Xie. 2023. Decomposition Enhances Reasoning via Self-Evaluation Guided
Decoding. CoRR abs/2305.00633 (2023).

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1-10.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Generating Natural Language
Proofs with Verifier-Guided Search. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing (EMNLP). 89-105.

W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, and S. Zhang. 2020. Leveraging Code
Generation to Improve Code Retrieval and Summarization via Dual Learning. In
Proceedings of The Web Conference 2020. 2309-2319.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. 2023. Self-Edit: Fault-Aware
Code Editor for Code Generation. CoRR abs/2305.04087 (2023).

Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. 21-29.

	Abstract
	1 Introduction
	2 Communication-Centered Process
	3 Example Usage
	4 Background and Related Work
	5 Conclusion and Future Work
	6 Acknowledgements
	References

