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ABSTRACT
The emergence of Large Language Models (LLMs) has revolution-
ized automatic code generation from natural language input. De-
spite the promising performance, there remains a limited under-
standing of the code generation errors that LLMs can produce. To
bridge the gap, this study provides an in-depth analysis of code
generation errors across three representative LLMs within the Hu-
manEval dataset. Specifically, we employ open-coding and iterative
refinement to distill a comprehensive taxonomy of code generation
errors intrinsic to LLMs. Based on this taxonomy, we identified two
predominant categories of errors: semantic errors, indicating logi-
cal misunderstandings of the natural language input, and syntactic
errors, uncovering structural misconceptions within the code. Ad-
ditionally, we observed a consistent distribution of different error
types across three models despite the differing successful rates. Our
findings reveal the challenges that current code generation LLMs
encounter, shedding light on future research about error-handling
and repair techniques for LLMs’ code generation.
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1 INTRODUCTION
Automatic code generation from natural language input has con-
sistently been popular across multiple communities, e.g., artifi-
cial intelligence (AI), software engineering (SE), and programming
languages (PL). Recent advancements in Large Language Models
(LLMs) have propelled this field forward significantly [2, 13, 33, 42,
43]. According to a benchmark built upon the HumanEval dataset,
OpenAI’s CodeX (released in 2021) can successfully solve 28.8% of
a given set of 164 hand-written programming problems [12]. In a
more recent study, it was demonstrated that GPT-4, one of the latest
state-of-the-art (SOTA) LLMs released by OpenAI in 2023, achieved
an even higher success rate, solving 88.4% of the programming
problems in the HumanEval dataset [25].

Despite the significant progress and promising performance of
State-of-the-Art (SOTA) LLMs, there remains a lack of deep under-
standing regarding cases where code generation fails. Particularly,
developers intending to integrate LLMs into their daily development
process may harbor the following concerns: What types of errors
does an LLM typically produce? Do various LLMs tend to make simi-
lar errors, or do they exhibit widely divergent patterns of mistakes?
Answering these questions would help researchers and developers
gain insights from SOTA code generation LLMs, revealing future
opportunities for developing error-handling and repair mechanisms
for LLMs.

To bridge these gaps, in this paper, we conducted a compre-
hensive analysis of code generation errors made by the SOTA
LLMs. Our study focused on three representative LLMs: CodeGen-
16B [31], InCoder-1.3B [20], and ChatGPT [2]. We first collect a
subset of failure code generation cases of different LLMs on the
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HumanEval dataset. Subsequently, four authors were involved in
multiple rounds of open-coding and iterative refinement to derive
a taxonomy of code generation errors made by LLMs. Building
upon this taxonomy, we label the errors made by all three LLMs to
investigate the following three research questions:
• RQ1: To what extent the code generated by LLMs is similar to
the ground truth code?

• RQ2: What specific types of errors manifest in code generation
across different LLMs?

• RQ3: What commonalities and distinctions emerge from the
errors produced by different LLMs?
Our study reveals server insights into the code generation errors

made by LLMs. First, we identified two main categories of errors
that consistently exist across variousmodels: semantic and syntactic
errors.
• Semantic errors encompass various issues such as Missing Con-
dition, Wrong (Logical) Direction, Incorrect Condition, and Con-
stant Value Error, among others. These errors often stem from the
model’s misinterpretation of the natural language description,
shedding light on the challenges LLMs face in comprehending
logical constructs and conditional logic.

• Syntactic errors refer to mistakes in the structure or grammar of
code committed by LLMs. Representative syntactic errors include
Incorrect Code Blocks, Incorrect Function Arguments, Incorrect Re-
turn Values, etc. The presence of syntactic errors underscores the
difficulties LLMs encounter in correctly structuring code.
Furthermore, we find that despite variations in successful

rates among the models, the distribution of these error types
remained consistent. Specifically, we observe that a large propor-
tion of the errors stem from missing requirements from the natural
language input (semantic error: “Missing multiple statements”,
and syntactic error: “Incorrect code block”). This indicates that it
is still challenging for LLMs to generate correct code given complex
task requirements.

In summary, this paper makes the following contributions:
• We established a taxonomy of error types for three prominent
and state-of-the-art code generation LLMs through iterative and
axial coding procedures.

• We analyzed the similarities and differences in errors made by
different code generation models, highlighting the challenges
faced by LLMs.

• We discussed implications and future opportunities of developing
error-handling and repair techniques for code-generation LLMs.

2 RELATEDWORK
2.1 LLM-based Code Generation
Transformer has revolutionized AI-enabled text processing tasks
ever since its introduction [45]. Its immense potential across a spec-
trum of downstream NLP tasks [15–17] has drawn the attention of
researchers to explore the possibility of utilizing it for code-related
tasks. Early attempts such as CodeBERT [18] and CodeT5 [47] ex-
ploit encoder-decoder architecture as the core backbone, aiming to
generate both syntactically and semantically correct code. These
models, comprised of millions of parameters, are pre-trained on a

combination of programming and natural language data. Despite
promising, thesemodels have yet to match the proficiency of human
programmers.

Marking a significant milestone along the direction, OpenAI
released Codex, a decoder-only architecture with up to 12 billion
parameters [12] in 2021. This model now also plays a vital role in
a well-known commercial tool, GitHub Copilot. The HumanEval
dataset is also proposed in the same paper, and it has become the
default benchmark for the follow-up work. Later in the year, Google
Research presents an empirical study with another famous bench-
mark dataset MBPP [8]. This study further shows the underscored
the efficacy of the decoder-only architecture. Since then, the ma-
jority of subsequent work has gravitated towards the decoder-only
LLM architectures [4, 20, 24, 31, 55]. Codex’s success has drawn
both Tech Giants and research groups into the area. For example,
Meta proposes Incoder [20], Amazon provides commercial service
CodeWhisperer [1], BigCode project launches SantaCoder [4] and
StarCoder [24], and Salesforce proposes CodeGen [31]. Notably, all
these models are tailored for tasks related to code processing.

Recently, pre-trained large language models with billions of pa-
rameters on massive text data have given rise to what is termed
as emergent abilities [48]. These models exhibit impressive perfor-
mance on various downstream tasks and have become the game
changer in related fields. Examples of such are Palm series [5, 13],
LLAMA series [42, 43], ChatGPT [2] and GPT series [33]. Among
them, ChatGPT and GPT-4, which have been fine-tuned using
Reinforcement Learning from Human Feedback (RLHF) [14, 34],
are perceived as early indicators of Artificial General Intelligence
(AGI) [10]. They can generate code with functional accuracy com-
parable to human developers, significantly surpassing prior meth-
ods. To illustrate, when evaluated on the HumanEval and EvalPlus
benchmarks for the pass@1 score, GPT-4 achieves a successful rate
of 88.4% and 76.2%, respectively, while ChatGPT records 73.2% and
63.4% [25]. Such performance markedly exceed those of the current
SOTA LLMs specified for code processing, StarCoder [24], which
achieves a successful rate of 34.1% and 29.3%, respectively.

2.2 Quality of AI-generated Code
Evaluating the quality of AI-generated code can reveal the current
approach’s shortcomings and guide future improvement. While
prior research has delved into various facets such as robustness [6,
27, 38, 56], security [7, 36, 39], and usability [3, 9, 22, 44], studies
specifically examining the correctness of AI-generated code [12, 21,
23, 26, 30, 37, 51] are of particular relevance to our work.

Objective metrics offer a relatively direct approach to assessing
the quality and correctness of generated code. For instance, when
the corrected reference code is predetermined, the CodeBLEU met-
ric [37] quantifies the similarity between the generated and refer-
ence code, indicating the generated code’s quality. However, since
one functionality can yield multiple valid implementations, this
metric might only partially capture correctness. In contrast, the
Pass@k metric [12, 23] evaluates how many generated samples
successfully pass a specified test suite, offering a potentially more
precise measure of code correctness. Several following attempts
have been made to evaluate generated code quality more holis-
tically. These include efforts to transform coding problems into
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multilingual versions [11, 55] and initiatives that expand upon ex-
isting test cases [25]. Building on these efforts, a large number of
studies has statistically analyzed the code quality of various LLMs,
providing a high-level overview of their programming capabili-
ties [21, 30, 41, 50–52]. However, since these studies often neglect
direct source code analysis, they may fall short of offering a detailed
insight into the errors committed by LLMs. Compared with these
studies, we conduct systematic categorization of fine-grained error
types with manual investigation.

Three studies are particularly pertinent to our work [26, 28, 35].
Liu et al. [26] comprehensively evaluates the quality of code gener-
ated by ChatGPT, considering various aspects such as compilation
and run-time errors, output correctness, coding style, maintain-
ability, and performance. Notably, their analysis predominantly
relies on error messages and static analysis tools, such as Pylint
and Flake8. In contrast, our methodology emphasizes systematic
annotations to pinpoint the underlying causes of each error for the
generated code. Pan et al. [35] introduce a taxonomy centered on
code translation bugs, organizing 14 categories into four distinct
groups. While their emphasis is on code translation, our taxonomy
pertains to code generation, positioning our work as a parallel en-
deavor. Liu et al. [28] provide a thorough examination of the quality
of code generated by ChatGPT in a multi-round setting. While their
taxonomy primarily addresses compilation and run-time errors, our
study extends to encompass functional correctness, considering
both syntactic and semantic faults.

3 METHODOLOGY
In this section, we introduce the dataset and LLMs used in our study
and the procedure of our manual analysis.

3.1 Dataset
In this study, we utilize the HumanEval dataset to analyze code gen-
eration errors made by LLMs. The HumanEval dataset encompasses
164 hand-written Python programming tasks, each accompanied
by an average of 7.7 unit tests [12]. These tasks involve language
comprehension, reasoning, algorithms, and simple mathematics.
Notably, the inclusion of hand-writing programming tasks serves
to mitigate certain potential biases that might arise when employ-
ing crowd-sourced datasets such as MBPP [8], considering that a
significant fraction of code generation LLMs is trained on publicly
available GitHub repositories.

A common practice to evaluate an LLM’s performance on code
generation is adopting the Pass@k metric [12]. Pass@k measures
the successful rates over a code generation dataset for an LLM,
where 𝑘 refers to the number of code samples generated by the
LLMs. A task is deemed successful if, among the 𝑘 samples, any
manages to successfully pass all given test cases. In this paper, our
primary focus lies on code generation errors obtained with the
Pass@1 metric.

3.2 Code Generation LLMs
We focus on three representative code generation LLMs in this
study: CodeGen-16B [31], InCoder-1.3B [20], and ChatGPT [2].
Table 1 presents each model’s performance on the HumanEval
dataset. We introduce each model in the following.

Table 1: Code generation LLMs included in this study

Model Release
Performance

Pass@1 Pass@10 Pass@100
CodeGen-16B [31] Mar. 2022 32.9% 56.0% 81.5%
InCoder-1.3B [20] Apr. 2022 12.2% 15.9% 25.2%
ChatGPT [2] Nov. 2022 73.2% 88.6% 94.0%

• CodeGen-16B [31] is an open-source LLM released by Sales-
force. It employs a decoder-only architecture with rotary position
embedding. The series of CodeGen models are trained on 217GB
Python code. We utilize a version of CodeGen with 16B parame-
ters (CodeGen-16B).

• InCoder-1.3B [20] is another open-source LLM released by
Meta AI. InCoder utilizes a new causal masking objective, which
allows filling code blocks as well as standard left-to-right code
generation. InCoder is trained on 159GB open-source reposito-
ries with a permissive license licensed from GitHub, GitLab, and
StackOverflow. We adopt an InCoder variant with 1.3b parame-
ters (InCoder-1.3B).

• ChatGPT [2] is a fine-tuned version of GPT 3.5, released by Ope-
nAI. It is further optimized for dialogue by using Reinforcement
Learning with Human Feedback (RLHF). ChatGPT is trained with
a massive number of crowd-sourced web text up to September
2021.

3.3 Manual Analysis Procedure
We followed the well-established open coding process to develop a
taxonomy of code generation errors made by LLMs [40]. We detail
this process as the following steps:

3.3.1 Open coding. To begin, we randomly collected 31 errors
made by ChatGPT [2], 22 errors made by CodeGen-16B[31], and
88 (about 60 %) errors made by InCoder-1.3B [20] within the Hu-
manEval dataset. To establish a comprehensive taxonomy of code
generation errors, we further collected 10 errors each from two
other code-oriented LLMs (StarCoder [24] and SantaCoder [4]) to
enrich our labelling. A total of 161 code generation errors were
collected for coding at this stage. Then, four authors with rich
Python programming experience performed open coding on these
errors. Given ground truth (i.e., correct code snippets) provided by
the original HumanEval dataset, they were instructed to answer
the following three questions during the process: (1) What are the
syntactic differences between incorrect code and ground truth?
(2) Where was the error made? (3) What is the root cause of the
error? Upon the completion of the initial coding iteration, all coded
samples were recorded in a document. All authors then convened
to collectively discuss the codes and achieved consensus within
this preliminary version of the codebook.

3.3.2 Iterative refinement of the codebook. After obtaining the pre-
liminary codebook, four annotators iteratively improved the es-
tablished codebook. Each iteration included the following steps.
First, four annotators was assigned with a batch of 30 CodeGen-
16B errors (including 8 out of 30 unlabeled errors). Subsequently,
four annotators performed three rounds of coding independently.
Within each round, they were tasked with justifying their respective
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(a) CodeGen-16B
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(b) InCoder-1.3B
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(c) ChatGPT

Figure 1: Jaccard similarity between the generated code and ground truth across three LLMs.

codes for every error and recording their reasoning in a document.
If a new error occurs that the codebook does not cover, the annota-
tor needs to write a description of the error. Second, we computed
Fleiss’ Kappa [19] to determine the internal consistency among the
annotators at the end of each round of labeling. After each Fleiss’
Kappa calculation, the annotators were asked to conduct an internal
meeting. The theme of the meeting is to discuss the differences
between annotators’ justification of specific coding and exchange
opinions about updating the codebook. Finally, if the inter-rater
reliability scores between the annotators are not appreciable af-
ter going through the above procedures, a new round of labeling
will be held until the scores were substantial. At the end of the
final refinement iteration, the annotators had completed a total of
three iterations. The final codebook was established, and the Fleiss’
Kappa of the syntactic errors and semantic errors were both stable
above 0.68.

3.3.3 Annotating the rest of the code. Annotators use the final code-
book to label the remaining dataset. In this process, the unlabled
errors collected from each model was evenly assigned to four anno-
tators. Four annotators then independently labeled their assigned
errors. The final coding results were documented as a spreadsheet.

4 RESULTS
4.1 RQ1: Code Similarity
Figure 1 shows the distribution of Jaccard similarity scores between
the incorrect generated code and the ground truth for three different
LLMs. All three LLMs have low Jaccard similarity scores, where the
highest similarity score across three models is lower than 0.6. The
results indicate that non-trivial efforts might be needed to fix these
errors. Compared with the results of ChatGPT (Figure 1c), we also
find that two open-sourced LLMs, CodeGen-16B and InCoder-1.3B,
have much lower median similarity scores (0.15 and 0.11 v.s 0.20).
We also observe that InCoder-1.3B has much more code snippets
with a low similarity score (i.e., Jaccard similarity score < 0.1). A
plausible explanation is the generation ofmeaningless code snippets
by InCoder-1.3B. For example, InCoder-1.3B kept generating similar
but meaningless statements (Example 1) for a sorting task, resulting
a extremely low Jaccard similarity score.
1 # Given an array of non-negative integers, sort it in ascending
2 # order if the sum(first index value, last index value) is odd,

3 # in descending order otherwise.
4
5 def sort_array(array):
6 sorted_array = []
7 sorted_array.append(array[0])
8 sorted_array.append(array[1])
9 sorted_array.append(array[2])
10 ...

Example 1: An example of meaningless code snippets
generated by InCoder-1.3B

Notably, there is a large performance gap between the open-
sourced LLMs and ChatGPT, which potentially lead to a relatively
lower Jaccard similarity. We further analyze the distribution of
different code types with different LLMs in Section 4.3.

Finding 1

Most of the code generated by three LLMs is not similar to
the ground truth, while InCoder-1.3B generated more code
snippets with extreme low similarity.

4.2 RQ2: Error Taxonomy
Table 2 presents the finalized taxonomy of code generation errors
made by LLMs. The taxonomy contains two main categories of
errors alongside two different dimensions: Semantic Errors and
Syntactic Errors. The semantic errors predominantly exposes mis-
conceptions in comprehending the natural language descriptions
accompanying programming tasks. By contrast, the syntactic er-
rors could indicate potential grammatical or structural imprecision
within the generated code. We adopt a three-level categorization
for each error type. For instance, “Semantic Errors”(category)—
“Condition Error” (type)—“Missing condition” (sub-type). Below
we show a few example of errors committed by studied LLMs.
1 # Given an integer. return a tuple that has the number of even and
2 # odd digits respectively.
3
4 def even_odd_count(num):
5 even_count = 0
6 odd_count = 0
7 for digit in str(abs(num)):
8 if int(digit) % 2 == 0:
9 even_count += 1
10 else:
11 odd_count += 1

12 if num < 0:
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Table 2: Taxonomy of code generation errors made by LLMs.

Error Categories Error Types

Semantic Errors

Condition Error Missing condition
Incorrect condition

Constant Value Error Constant value error

Reference Error Wrong method/variable
Undefined name

Operation/Calculation Error Incorrect arithmetic operation
Incorrect comparison operation

Garbage Code
Only comments
Meaningless code snippet
Wrong (logical) direction

Incomplete Code/Missing Statements Missing one statement
Missing multiple statements

Memory Error Infinite loop
Integer overflow

Syntactic Errors

Conditional Error If error

Loop Error For error
While error

Return Error Incorrect return value

Method Call Error
Incorrect function name
Incorrect function arguments
Incorrect method call target

Assignment Error

Incorrect arithmetic
Incorrect constant
Incorrect variable name
Incorrect comparison

Import Error Import error

Code Block Error Incorrect code block
Missing code block

13 even_count *= -1

14 odd_count *= -1
15 return (even_count, odd_count)

Example 2: An example of ChatGPT error

In this example (Example 2), ChatGPT adds an extra code block
(highlighted in red) to deal with the cases when the input is a nega-
tive number, which is unnecessary. Therefore, from a semantic view-
point, this example is categorized as “Wrong (logical) direction”,
while from a syntactic angle, it falls under “Incorrect code block”.

Example 3 shows an example of errors made by CodeGen-16B. In
this example, the model fails to understand the task requirements.
Subsequently, the generated code is simply the copy&paste of the
given examples. Therefore, we code this example as “Meaningless
code snippet” and “Incorrect code block”, respectively
1 # You are given a list of integers.
2 # You need to find the largest prime value and return the sum of
3 # its digits.
4
5 def skjkasdkd(lst):
6 ...

7 lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6]

8 lst = [0,81,12,3,1,21]

9 lst = [0,8,1,2,1,7]

10 ...

Example 3: An example of CodeGen-16B error

Example 4 shows an example of InCoder-1.3B error. In this ex-
ample, InCoder-1.3B miss the task requirements that ‘y’ is also a
vowel, resulting in a semantic error of “Missing one statement” and
a syntactic error of “Missing code block”.
1 # Write a function vowels_count which takes a string representing
2 # a word as input and returns the number of vowels in the string.
3 # Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is
4 # also a vowel, but only when it is at the end of the given word.
5
6 def vowels_count(s):

7 if sum(1 for c in s if c in ’AEIOUaeiou’)

Example 4: An example of InCoder-1.3B error

Finding 2

We establish the first taxonomy of LLMs’ code generation
errors from two dimensions: semantic and syntactic errors.
Each of them includes fourteen specific types of errors.
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Figure 2: Distribution of Semantic Errors made by three LLMs.

4.3 RQ3: Comparison between Different Models
Semantic Errors. Figure 2 shows the distribution of semantic
errors of three studied LLMs: CodeGen-16B, InCoder-1.3B, and
ChatGPT. Collectively, all three LLMs exhibit instances of all seven
primary categories of semantic errors, encompassing a total of 13,
12, and 12 respective sub-type errors. Three studied LLMs also share
a similar distribution regarding the error types. The most common
semantic error type is “Garbage Code”, consisting of “Only comments”,
“Meaningless code snippet”, and “Wrong (logical) direction”.
27.3%, 38.1%, and 22.4% of the errors made by three LLMs fall into
this category, respectively. We also notice that InCoder-1.3B has a
larger portion of “Wrong (logical) direction”. We suspect this is
due to the much smaller size of the model compared with the other
two LLMs, resulting in insufficient capabilities of understanding
complex task requirements. As shown in Example 5, InCoder-1.3B
failed to understand a relatively complex task. As a result, InCoder-
1.3B generated code in a wrong logical direction that only sorted
the input.
1 # You are given a 2 dimensional data, as a nested lists, which is
2 # similar to matrix, however, unlike matrices, each row may
3 # contain a different number of columns. Given lst, and integer x,
4 # find integers x in the list, and return list of tuples,
5 # [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate -
6 # (row, columns), starting with 0. Sort coordinates initially by
7 # rows in ascending order. Also, sort coordinates of the row by
8 # columns in descending order.
9
10 def get_row(lst, x):

11 lst = sorted(lst, key=lambda x: x[0])

12 lst = sorted(lst, key=lambda x: x[1])

13 return [(i, j) for i, j in zip(lst, lst[1:])]

Example 5: An example of Wrong (logical) direction made
by InCoder-1.3B

Another common error type is “Incorrect condition”, where
14%, 12%, and 19% of the errors made by CodeGen-16B, InCoder-
1.3B, and ChatGPT can be grouped into this category, respectively.
Example 6 shows an incorrect condition generated by ChatGPT.
1 # Create a function that returns True if the last character of a
2 # given string is an alphabetical character and is not a part of
3 # a word, and False otherwise. Note: "word" is a group of
4 # characters separated by space.
5
6 # Incorrect code by ChatGPT
7 def check_if_last_char_is_a_letter(txt):
8 if len(txt) == 0:
9 return False
10 else:
11 last_char = txt[-1]

12 if last_char.isalpha() and (len(txt.split()[-1]) == 1) :

13 return True
14 else:
15 return False
16
17 # Groundtruth
18 def check_if_last_char_is_a_letter(txt):
19 if len(txt) == 0: return False
20 if len(txt) == 1: return txt.isalpha()

21 return txt[-1].isalpha() and txt[-2] == " "

Example 6: An example of Incorrect condtion made by
ChatGPT

In this example, compared with the ground truth, ChatGPT does
not take the case that the last character might be a space into account.
For instance, if the given input is “apple pi e ”, ideally, the
function should return False. However, the code generated by
ChatGPT would return True because the strip method would
delete the spaces at the end of the string. These results indicate that
it is still challenging for LLMs to handle complex logical conditions.

Additionally, our analysis reveals that the two open-sourced
LLMs, CodeGen-16B and InCoder-1.3B, grapple with a notable
proportion (17% and 15%, respectively) of “Missing multiple

statements” errors. However, this category is relatively less fre-
quent in ChatGPT, with only 6% of the total errors falling into this
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classification. A plausible explanation is that ChatGPT is better
at understanding natural language input (task requirements). For
instance (Example 7), both CodeGen-16B and InCoder-1.3B miss the
requirements that “the elements must be even numbers”, resulting in
missing statements within the generated code.
1 # Given a non-empty list of integers lst. Add the even elements
2 # that are at odd indices.
3
4 # Incorrect code by CodeGen-16B
5 def add(lst):
6 return sum(lst[1::2])
7
8 # Incorrect code by InCoder-1.3B
9 def add(lst):
10 return sum([lst[i] for i in range(1, len(lst), 2)])
11
12 # Groundtruth
13 def add(lst):
14 s = 0
15 for i in range(1, len(lst), 2):

16 if lst[i] % 2 == 0:
17 s += lst[i]
18 return s

Example 7: An example of missing statements by CodeGen-
16B and InCoder-1.3B

Finding 3

The most common error semantic types among three LLMs
are “Garbage Code” and “Condition Error”. Compared with
CodeGen-16B and InCoder-1.3B, ChatGPT deos not often
generate code with missing statements.

Furthermore, we find that even for a same failure task, different
LLMs could have different semantic error types. Out of 25 problems
that all three LLMs fail to solve, only one problem triggers the exact
same semantic error for these LLMs. This indicates that different
LLMs could behave differently on a same task. Example 8 shows an
example that three LLMs made different semantic errors.
1 # Complete the function that takes two integers and returns the
2 # product of their unit digits.
3
4 # Incorrect code by CodeGen-16B
5 def multiply(a, b):
6 return a * b
7
8 # Incorrect code by InCoder-1.3B
9 def multiply(a, b):
10 product = 1
11 while a > 0:
12 product *= a
13 a -= 1
14 while b > 0:
15 product *= b
16 b -= 1
17 return product
18
19 # Incorrect code by ChatGPT
20 def multiply(a, b):
21 return abs(a % 10 * b % 10)
22
23 # Groundtruth
24 def multiply(a, b):
25 return int(str(a)[-1]) * int(str(b)[-1])

Example 8: An example of three LLMs made different errors
on a same task

In this example, CodeGen-16B miss a few statements of handling
the “unit digits” (“Missing multiple statements”), while InCoder-
1.3B completely ignored the task (“Wrong (logical) direction”).
ChatGPT only made a small mistake with parentheses (“Incorrect
arithmetic operation”). One takeaway from such observation is
that ensemble of different LLMs might improve the code generation
successful rate.

Finding 4

Different LLMs could commit completely different semantic
errors with a same programming task.

Syntactic Errors. Figure 3 shows the distribution of Syntactic
Errors made by three LLMs. We can observe that all three LLMs
again share a similar distribution of syntactic errors. The most
common syntactic error type is “Code Block Error”, where 53.2%,
60.0%, and 43.2% of the errors made by CodeGen-16B, InCoder-
1.3B, and ChatGPT fall into this category, respectively. We believe
this could be largely attributed to an LLM’s mis-interpret the task
requirements. In such cases, a code patch might be needed to fix
“Incorrect code block” or “Missing code block”. Example 9 shows
an example that CodeGen-16B only generated comments.
1 # Returns a list l' such that l' is identical to l in the indicies
2 # that are not divisible by three, while its values at the
3 # indicies that are divisible by three are equal to the values of
4 # the corresponding indicies of l, but sorted.
5
6 def sort_third(l: list):
7 # l' = [l[i] for i in range(len(l)) if i % 3 != 0]
8 # l' = [l[i] for i in range(len(l)) if i % 3 != 0]
9 ...

Example 9: An example of missing code blocks by CodeGen-
16B

Another major type of syntactic errors is “Method Call Error”.
Specifically, the two open-sourced LLMs have more cases of
“Incorrect funtion name”, while ChatGPT encounters more
“Incorrect function arguments”. Example 10 shows an example
that ChatGPT generated incorrect arguments for the “spilt()”
method.
1 # You'll be given a string of words, and your task is to count the
2 # number of boredoms. A boredom is a sentence that starts with the
3 # word "I". Sentences are delimited by '.', '?' or '!'.
4
5 def is_bored(S):
6 sentences = S.split('.')
7 sentences += S.split('?')
8 sentences += S.split('!')
9 count = 0
10 for sentence in sentences:

11 if sentence.strip(). startswith(’I’) :

12 count += 1
13 return count

Example 10: An example of incorrect function arguments
generated by ChatGPT

The task requires the generated code to count the sentence that
starts with the word "I". Therefore, the correct code should change
the argument ’I’ to ’I ’ (a space is added).
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Figure 3: Distribution of Syntactic Errors made by three LLMs.

Finding 5

A large number of syntactic errors made by three LLMs could
be grouped into “Code Block Error”. Besides, “Method Call

Error” also poses threats to the correctness of the generated
code.

5 IMPLICATIONS AND FUTURE
OPPORTUNITIES

Our study reveals several significant implications for the code gen-
eration by LLMs and unveils promising research opportunities to
improve the interpretability and reliability of code LLMs.

Firstly, we identify a significant proportion of semantic errors
originating from LLMs categorized as “Garbage Code”. This high-
lights instances where LLM behavior proves challenging to de-
cipher for human developers, exemplified by the production of
meaningless code snippets (Listing 1) or comments only (Listing 9).
These findings underscore potential research opportunities in the
realm of interpreting LLMs and the domain of explainable AI (XAI).
For instance, in cases where LLMs recurrently generate similar
statements, the employment of XAI techniques (such as attention-
based [46, 53, 54] or perturbation-based [29, 49]) could be explored
to ascertain if the model has compromised its capacity for capturing
long-term dependencies, i.e., if it loses track of task requirements
when generating new content. Additionally, when LLMs miss parts
of task requirements, an examination of whether the model exhibits
diminished attention to corresponding tokens could be undertaken.
By seamlessly integrating appropriate XAI methodologies, develop-
ers might gain insight into the underlying causes of LLM’s critical
generation errors and potentially devise strategies for enhancing
the model’s performance.

Secondly, although a few minor syntactic errors can potentially
be rectified through existing software repair techniques, yet, a larger
number of errors require non-trivial repair efforts due to their roots

in task requirementmisinterpretation (Listing 7 and Listing 10). This
reveals the distinction between repairing machine-generated and
human-authored code, resulting in the need of novel error-handling
mechanisms. For instance, when repairing an incorrect code snippet
generated by LLMs, it might be imperative to first determine if the
LLM has comprehensively grasped the task requirements. If this
understanding is established, some of the errors might be directed
towards existing software repair methodologies [32]; alternatively,
if the comprehension is lacking, a repair approach that compels
the LLM to accurately interpret the task prerequisites becomes
pertinent. Proposing these new repairing techniques would help
improve an LLM’s code generation accuracy.

Finally, our study has only studied the error patterns of Python
code generation. Since SOTA LLMs [2, 33] are able to support mul-
tiple programming languages, it is also worthwhile to expand our
study with programming tasks from other languages (e.g., C/C++
and Java [55]). Extensive studies would help improve our taxon-
omy of code generation errors, thereby empowering developers
with a more profound and comprehensive understanding of LLMs’
capabilities in code generation.

6 THREATS TO VALIDITY
Internal Validity. Potential threats come from our manual analysis
process. Labeling a code snippet’s error type is subjective, especially
for the semantic errors. Different labelers might have different
determinations of a same code snippet. To mitigate this, we first
performed open-coding and iteratively refined our codebook until a
substantial agreement is achieved. Our final Fleiss’ Kappa regarding
the semantic and syntactic errors are both above 0.68.
External Validity.One potential threat lies in the choice of dataset.
We have only labeled the HumanEval dataset, which only includes
Python programming tasks. Therefore, our established taxonomy
and findings might not generalize to other programming languages
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and datasets. Furthermore, we have only experimented three LLMs
released in 2022. It is unclear whether our findings can generatl-
ize to the most recent LLMs, e.g., GPT4 [33], StarCoder [24], and
SantaCoder [4].
Construct Validity. Our taxonomy is built from an open-coding
process on a sampled subset of errors. Therefore, there is a potential
threat that specific types of errors were missed during the estab-
lishment of the codebook. To mitigate this, we sampled errors from
five different LLMs to include a diverse set of errors.

7 CONCLUSION
In this paper, we present an empirical study on code generation
errors made by large language models. We first derived a taxonomy
of LLMs’ code generation errors based on SOTA LLM’s failure
cases within the HumanEval dataset [12] through open-coding and
iterative refinements. Furthermore, we labeled errors committed
by three SOTA code generation LLMs based on the established
taxonomy. Through the investigation of three research questions,
we find that despite the difference of successful rates between LLMs,
a similar distribution of semantic and syntactic errors exists across
different models. At the end of the paper, we further discuss the
implications from our study and propose a few future research
opportunities for improving LLMs’ interpretability and reliability
in code generation.
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