
An Empirical Study of Code Generation Errors made by Large
Language Models

Da Song∗
University of Alberta
Edmonton, AB, Canada
dsong4@ualberta.ca

Zijie Zhou∗
University of Illinois
Urbana-Champaign
Urbana, IL, USA

zijiez4@illinois.edu

Zhijie Wang
University of Alberta
Edmonton, AB, Canada
zhijie.wang@ualberta.ca

Yuheng Huang
University of Alberta
Edmonton, AB, Canada
yuheng18@ualberta.ca

Shengmai Chen
Purdue University

West Lafayette, IN, USA
chen3301@purdue.edu

Bonan Kou
Purdue University

West Lafayette, IN, USA
koub@purdue.edu

Lei Ma
University of Alberta, Canada
The University of Tokyo, Japan

ma.lei@acm.org

Tianyi Zhang
Purdue University

West Lafayette, IN, USA
tianyi@purdue.edu

ABSTRACT
The emergence of Large Language Models (LLMs) has revolution-
ized automatic code generation from natural language input. De-
spite the promising performance, there remains a limited under-
standing of the code generation errors that LLMs can produce. To
bridge the gap, this study provides an in-depth analysis of code
generation errors across three representative LLMs within the Hu-
manEval dataset. Specifically, we employ open-coding and iterative
refinement to distill a comprehensive taxonomy of code generation
errors intrinsic to LLMs. Based on this taxonomy, we identified two
predominant categories of errors: semantic errors, indicating logi-
cal misunderstandings of the natural language input, and syntactic
errors, uncovering structural misconceptions within the code. Ad-
ditionally, we observed a consistent distribution of different error
types across three models despite the differing successful rates. Our
findings reveal the challenges that current code generation LLMs
encounter, shedding light on future research about error-handling
and repair techniques for LLMs’ code generation.

CCS CONCEPTS
• Software and its engineering; • Computing methodologies
→ Natural language processing;

KEYWORDS
Empirical Study, Code Generation, Large Language Models
∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MAPS ’23, December 3, 2023, San Francisco, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Da Song, Zijie Zhou, Zhijie Wang, Yuheng Huang, Shengmai Chen, Bonan
Kou, Lei Ma, and Tianyi Zhang. 2023. An Empirical Study of Code Gen-
eration Errors made by Large Language Models. In Proceedings of the 7th
Annual Symposium on Machine Programming (MAPS ’23). ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Automatic code generation from natural language input has con-
sistently been popular across multiple communities, e.g., artifi-
cial intelligence (AI), software engineering (SE), and programming
languages (PL). Recent advancements in Large Language Models
(LLMs) have propelled this field forward significantly [2, 13, 33, 42,
43]. According to a benchmark built upon the HumanEval dataset,
OpenAI’s CodeX (released in 2021) can successfully solve 28.8% of
a given set of 164 hand-written programming problems [12]. In a
more recent study, it was demonstrated that GPT-4, one of the latest
state-of-the-art (SOTA) LLMs released by OpenAI in 2023, achieved
an even higher success rate, solving 88.4% of the programming
problems in the HumanEval dataset [25].

Despite the significant progress and promising performance of
State-of-the-Art (SOTA) LLMs, there remains a lack of deep under-
standing regarding cases where code generation fails. Particularly,
developers intending to integrate LLMs into their daily development
process may harbor the following concerns: What types of errors
does an LLM typically produce? Do various LLMs tend to make simi-
lar errors, or do they exhibit widely divergent patterns of mistakes?
Answering these questions would help researchers and developers
gain insights from SOTA code generation LLMs, revealing future
opportunities for developing error-handling and repair mechanisms
for LLMs.

To bridge these gaps, in this paper, we conducted a compre-
hensive analysis of code generation errors made by the SOTA
LLMs. Our study focused on three representative LLMs: CodeGen-
16B [31], InCoder-1.3B [20], and ChatGPT [2]. We first collect a
subset of failure code generation cases of different LLMs on the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MAPS ’23, December 3, 2023, San Francisco, CA, USA Song and Zhou, et al.

HumanEval dataset. Subsequently, four authors were involved in
multiple rounds of open-coding and iterative refinement to derive
a taxonomy of code generation errors made by LLMs. Building
upon this taxonomy, we label the errors made by all three LLMs to
investigate the following three research questions:
• RQ1: To what extent the code generated by LLMs is similar to
the ground truth code?

• RQ2: What specific types of errors manifest in code generation
across different LLMs?

• RQ3: What commonalities and distinctions emerge from the
errors produced by different LLMs?
Our study reveals server insights into the code generation errors

made by LLMs. First, we identified two main categories of errors
that consistently exist across variousmodels: semantic and syntactic
errors.
• Semantic errors encompass various issues such as Missing Con-
dition, Wrong (Logical) Direction, Incorrect Condition, and Con-
stant Value Error, among others. These errors often stem from the
model’s misinterpretation of the natural language description,
shedding light on the challenges LLMs face in comprehending
logical constructs and conditional logic.

• Syntactic errors refer to mistakes in the structure or grammar of
code committed by LLMs. Representative syntactic errors include
Incorrect Code Blocks, Incorrect Function Arguments, Incorrect Re-
turn Values, etc. The presence of syntactic errors underscores the
difficulties LLMs encounter in correctly structuring code.
Furthermore, we find that despite variations in successful

rates among the models, the distribution of these error types
remained consistent. Specifically, we observe that a large propor-
tion of the errors stem from missing requirements from the natural
language input (semantic error: “Missing multiple statements”,
and syntactic error: “Incorrect code block”). This indicates that it
is still challenging for LLMs to generate correct code given complex
task requirements.

In summary, this paper makes the following contributions:
• We established a taxonomy of error types for three prominent
and state-of-the-art code generation LLMs through iterative and
axial coding procedures.

• We analyzed the similarities and differences in errors made by
different code generation models, highlighting the challenges
faced by LLMs.

• We discussed implications and future opportunities of developing
error-handling and repair techniques for code-generation LLMs.

2 RELATEDWORK
2.1 LLM-based Code Generation
Transformer has revolutionized AI-enabled text processing tasks
ever since its introduction [45]. Its immense potential across a spec-
trum of downstream NLP tasks [15–17] has drawn the attention of
researchers to explore the possibility of utilizing it for code-related
tasks. Early attempts such as CodeBERT [18] and CodeT5 [47] ex-
ploit encoder-decoder architecture as the core backbone, aiming to
generate both syntactically and semantically correct code. These
models, comprised of millions of parameters, are pre-trained on a

combination of programming and natural language data. Despite
promising, thesemodels have yet to match the proficiency of human
programmers.

Marking a significant milestone along the direction, OpenAI
released Codex, a decoder-only architecture with up to 12 billion
parameters [12] in 2021. This model now also plays a vital role in
a well-known commercial tool, GitHub Copilot. The HumanEval
dataset is also proposed in the same paper, and it has become the
default benchmark for the follow-up work. Later in the year, Google
Research presents an empirical study with another famous bench-
mark dataset MBPP [8]. This study further shows the underscored
the efficacy of the decoder-only architecture. Since then, the ma-
jority of subsequent work has gravitated towards the decoder-only
LLM architectures [4, 20, 24, 31, 55]. Codex’s success has drawn
both Tech Giants and research groups into the area. For example,
Meta proposes Incoder [20], Amazon provides commercial service
CodeWhisperer [1], BigCode project launches SantaCoder [4] and
StarCoder [24], and Salesforce proposes CodeGen [31]. Notably, all
these models are tailored for tasks related to code processing.

Recently, pre-trained large language models with billions of pa-
rameters on massive text data have given rise to what is termed
as emergent abilities [48]. These models exhibit impressive perfor-
mance on various downstream tasks and have become the game
changer in related fields. Examples of such are Palm series [5, 13],
LLAMA series [42, 43], ChatGPT [2] and GPT series [33]. Among
them, ChatGPT and GPT-4, which have been fine-tuned using
Reinforcement Learning from Human Feedback (RLHF) [14, 34],
are perceived as early indicators of Artificial General Intelligence
(AGI) [10]. They can generate code with functional accuracy com-
parable to human developers, significantly surpassing prior meth-
ods. To illustrate, when evaluated on the HumanEval and EvalPlus
benchmarks for the pass@1 score, GPT-4 achieves a successful rate
of 88.4% and 76.2%, respectively, while ChatGPT records 73.2% and
63.4% [25]. Such performance markedly exceed those of the current
SOTA LLMs specified for code processing, StarCoder [24], which
achieves a successful rate of 34.1% and 29.3%, respectively.

2.2 Quality of AI-generated Code
Evaluating the quality of AI-generated code can reveal the current
approach’s shortcomings and guide future improvement. While
prior research has delved into various facets such as robustness [6,
27, 38, 56], security [7, 36, 39], and usability [3, 9, 22, 44], studies
specifically examining the correctness of AI-generated code [12, 21,
23, 26, 30, 37, 51] are of particular relevance to our work.

Objective metrics offer a relatively direct approach to assessing
the quality and correctness of generated code. For instance, when
the corrected reference code is predetermined, the CodeBLEU met-
ric [37] quantifies the similarity between the generated and refer-
ence code, indicating the generated code’s quality. However, since
one functionality can yield multiple valid implementations, this
metric might only partially capture correctness. In contrast, the
Pass@k metric [12, 23] evaluates how many generated samples
successfully pass a specified test suite, offering a potentially more
precise measure of code correctness. Several following attempts
have been made to evaluate generated code quality more holis-
tically. These include efforts to transform coding problems into

An Empirical Study of Code Generation Errors made by Large Language Models MAPS ’23, December 3, 2023, San Francisco, CA, USA

multilingual versions [11, 55] and initiatives that expand upon ex-
isting test cases [25]. Building on these efforts, a large number of
studies has statistically analyzed the code quality of various LLMs,
providing a high-level overview of their programming capabili-
ties [21, 30, 41, 50–52]. However, since these studies often neglect
direct source code analysis, they may fall short of offering a detailed
insight into the errors committed by LLMs. Compared with these
studies, we conduct systematic categorization of fine-grained error
types with manual investigation.

Three studies are particularly pertinent to our work [26, 28, 35].
Liu et al. [26] comprehensively evaluates the quality of code gener-
ated by ChatGPT, considering various aspects such as compilation
and run-time errors, output correctness, coding style, maintain-
ability, and performance. Notably, their analysis predominantly
relies on error messages and static analysis tools, such as Pylint
and Flake8. In contrast, our methodology emphasizes systematic
annotations to pinpoint the underlying causes of each error for the
generated code. Pan et al. [35] introduce a taxonomy centered on
code translation bugs, organizing 14 categories into four distinct
groups. While their emphasis is on code translation, our taxonomy
pertains to code generation, positioning our work as a parallel en-
deavor. Liu et al. [28] provide a thorough examination of the quality
of code generated by ChatGPT in a multi-round setting. While their
taxonomy primarily addresses compilation and run-time errors, our
study extends to encompass functional correctness, considering
both syntactic and semantic faults.

3 METHODOLOGY
In this section, we introduce the dataset and LLMs used in our study
and the procedure of our manual analysis.

3.1 Dataset
In this study, we utilize the HumanEval dataset to analyze code gen-
eration errors made by LLMs. The HumanEval dataset encompasses
164 hand-written Python programming tasks, each accompanied
by an average of 7.7 unit tests [12]. These tasks involve language
comprehension, reasoning, algorithms, and simple mathematics.
Notably, the inclusion of hand-writing programming tasks serves
to mitigate certain potential biases that might arise when employ-
ing crowd-sourced datasets such as MBPP [8], considering that a
significant fraction of code generation LLMs is trained on publicly
available GitHub repositories.

A common practice to evaluate an LLM’s performance on code
generation is adopting the Pass@k metric [12]. Pass@k measures
the successful rates over a code generation dataset for an LLM,
where 𝑘 refers to the number of code samples generated by the
LLMs. A task is deemed successful if, among the 𝑘 samples, any
manages to successfully pass all given test cases. In this paper, our
primary focus lies on code generation errors obtained with the
Pass@1 metric.

3.2 Code Generation LLMs
We focus on three representative code generation LLMs in this
study: CodeGen-16B [31], InCoder-1.3B [20], and ChatGPT [2].
Table 1 presents each model’s performance on the HumanEval
dataset. We introduce each model in the following.

Table 1: Code generation LLMs included in this study

Model Release
Performance

Pass@1 Pass@10 Pass@100
CodeGen-16B [31] Mar. 2022 32.9% 56.0% 81.5%
InCoder-1.3B [20] Apr. 2022 12.2% 15.9% 25.2%
ChatGPT [2] Nov. 2022 73.2% 88.6% 94.0%

• CodeGen-16B [31] is an open-source LLM released by Sales-
force. It employs a decoder-only architecture with rotary position
embedding. The series of CodeGen models are trained on 217GB
Python code. We utilize a version of CodeGen with 16B parame-
ters (CodeGen-16B).

• InCoder-1.3B [20] is another open-source LLM released by
Meta AI. InCoder utilizes a new causal masking objective, which
allows filling code blocks as well as standard left-to-right code
generation. InCoder is trained on 159GB open-source reposito-
ries with a permissive license licensed from GitHub, GitLab, and
StackOverflow. We adopt an InCoder variant with 1.3b parame-
ters (InCoder-1.3B).

• ChatGPT [2] is a fine-tuned version of GPT 3.5, released by Ope-
nAI. It is further optimized for dialogue by using Reinforcement
Learning with Human Feedback (RLHF). ChatGPT is trained with
a massive number of crowd-sourced web text up to September
2021.

3.3 Manual Analysis Procedure
We followed the well-established open coding process to develop a
taxonomy of code generation errors made by LLMs [40]. We detail
this process as the following steps:

3.3.1 Open coding. To begin, we randomly collected 31 errors
made by ChatGPT [2], 22 errors made by CodeGen-16B[31], and
88 (about 60 %) errors made by InCoder-1.3B [20] within the Hu-
manEval dataset. To establish a comprehensive taxonomy of code
generation errors, we further collected 10 errors each from two
other code-oriented LLMs (StarCoder [24] and SantaCoder [4]) to
enrich our labelling. A total of 161 code generation errors were
collected for coding at this stage. Then, four authors with rich
Python programming experience performed open coding on these
errors. Given ground truth (i.e., correct code snippets) provided by
the original HumanEval dataset, they were instructed to answer
the following three questions during the process: (1) What are the
syntactic differences between incorrect code and ground truth?
(2) Where was the error made? (3) What is the root cause of the
error? Upon the completion of the initial coding iteration, all coded
samples were recorded in a document. All authors then convened
to collectively discuss the codes and achieved consensus within
this preliminary version of the codebook.

3.3.2 Iterative refinement of the codebook. After obtaining the pre-
liminary codebook, four annotators iteratively improved the es-
tablished codebook. Each iteration included the following steps.
First, four annotators was assigned with a batch of 30 CodeGen-
16B errors (including 8 out of 30 unlabeled errors). Subsequently,
four annotators performed three rounds of coding independently.
Within each round, they were tasked with justifying their respective

MAPS ’23, December 3, 2023, San Francisco, CA, USA Song and Zhou, et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Jaccard Similarity

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

(a) CodeGen-16B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Jaccard Similarity

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

(b) InCoder-1.3B

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Jaccard Similarity

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

(c) ChatGPT

Figure 1: Jaccard similarity between the generated code and ground truth across three LLMs.

codes for every error and recording their reasoning in a document.
If a new error occurs that the codebook does not cover, the annota-
tor needs to write a description of the error. Second, we computed
Fleiss’ Kappa [19] to determine the internal consistency among the
annotators at the end of each round of labeling. After each Fleiss’
Kappa calculation, the annotators were asked to conduct an internal
meeting. The theme of the meeting is to discuss the differences
between annotators’ justification of specific coding and exchange
opinions about updating the codebook. Finally, if the inter-rater
reliability scores between the annotators are not appreciable af-
ter going through the above procedures, a new round of labeling
will be held until the scores were substantial. At the end of the
final refinement iteration, the annotators had completed a total of
three iterations. The final codebook was established, and the Fleiss’
Kappa of the syntactic errors and semantic errors were both stable
above 0.68.

3.3.3 Annotating the rest of the code. Annotators use the final code-
book to label the remaining dataset. In this process, the unlabled
errors collected from each model was evenly assigned to four anno-
tators. Four annotators then independently labeled their assigned
errors. The final coding results were documented as a spreadsheet.

4 RESULTS
4.1 RQ1: Code Similarity
Figure 1 shows the distribution of Jaccard similarity scores between
the incorrect generated code and the ground truth for three different
LLMs. All three LLMs have low Jaccard similarity scores, where the
highest similarity score across three models is lower than 0.6. The
results indicate that non-trivial efforts might be needed to fix these
errors. Compared with the results of ChatGPT (Figure 1c), we also
find that two open-sourced LLMs, CodeGen-16B and InCoder-1.3B,
have much lower median similarity scores (0.15 and 0.11 v.s 0.20).
We also observe that InCoder-1.3B has much more code snippets
with a low similarity score (i.e., Jaccard similarity score < 0.1). A
plausible explanation is the generation ofmeaningless code snippets
by InCoder-1.3B. For example, InCoder-1.3B kept generating similar
but meaningless statements (Example 1) for a sorting task, resulting
a extremely low Jaccard similarity score.
1 # Given an array of non-negative integers, sort it in ascending
2 # order if the sum(first index value, last index value) is odd,

3 # in descending order otherwise.
4
5 def sort_array(array):
6 sorted_array = []
7 sorted_array.append(array[0])
8 sorted_array.append(array[1])
9 sorted_array.append(array[2])
10 ...

Example 1: An example of meaningless code snippets
generated by InCoder-1.3B

Notably, there is a large performance gap between the open-
sourced LLMs and ChatGPT, which potentially lead to a relatively
lower Jaccard similarity. We further analyze the distribution of
different code types with different LLMs in Section 4.3.

Finding 1

Most of the code generated by three LLMs is not similar to
the ground truth, while InCoder-1.3B generated more code
snippets with extreme low similarity.

4.2 RQ2: Error Taxonomy
Table 2 presents the finalized taxonomy of code generation errors
made by LLMs. The taxonomy contains two main categories of
errors alongside two different dimensions: Semantic Errors and
Syntactic Errors. The semantic errors predominantly exposes mis-
conceptions in comprehending the natural language descriptions
accompanying programming tasks. By contrast, the syntactic er-
rors could indicate potential grammatical or structural imprecision
within the generated code. We adopt a three-level categorization
for each error type. For instance, “Semantic Errors”(category)—
“Condition Error” (type)—“Missing condition” (sub-type). Below
we show a few example of errors committed by studied LLMs.
1 # Given an integer. return a tuple that has the number of even and
2 # odd digits respectively.
3
4 def even_odd_count(num):
5 even_count = 0
6 odd_count = 0
7 for digit in str(abs(num)):
8 if int(digit) % 2 == 0:
9 even_count += 1
10 else:
11 odd_count += 1

12 if num < 0:

An Empirical Study of Code Generation Errors made by Large Language Models MAPS ’23, December 3, 2023, San Francisco, CA, USA

Table 2: Taxonomy of code generation errors made by LLMs.

Error Categories Error Types

Semantic Errors

Condition Error Missing condition
Incorrect condition

Constant Value Error Constant value error

Reference Error Wrong method/variable
Undefined name

Operation/Calculation Error Incorrect arithmetic operation
Incorrect comparison operation

Garbage Code
Only comments
Meaningless code snippet
Wrong (logical) direction

Incomplete Code/Missing Statements Missing one statement
Missing multiple statements

Memory Error Infinite loop
Integer overflow

Syntactic Errors

Conditional Error If error

Loop Error For error
While error

Return Error Incorrect return value

Method Call Error
Incorrect function name
Incorrect function arguments
Incorrect method call target

Assignment Error

Incorrect arithmetic
Incorrect constant
Incorrect variable name
Incorrect comparison

Import Error Import error

Code Block Error Incorrect code block
Missing code block

13 even_count *= -1

14 odd_count *= -1
15 return (even_count, odd_count)

Example 2: An example of ChatGPT error

In this example (Example 2), ChatGPT adds an extra code block
(highlighted in red) to deal with the cases when the input is a nega-
tive number, which is unnecessary. Therefore, from a semantic view-
point, this example is categorized as “Wrong (logical) direction”,
while from a syntactic angle, it falls under “Incorrect code block”.

Example 3 shows an example of errors made by CodeGen-16B. In
this example, the model fails to understand the task requirements.
Subsequently, the generated code is simply the copy&paste of the
given examples. Therefore, we code this example as “Meaningless
code snippet” and “Incorrect code block”, respectively
1 # You are given a list of integers.
2 # You need to find the largest prime value and return the sum of
3 # its digits.
4
5 def skjkasdkd(lst):
6 ...

7 lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6]

8 lst = [0,81,12,3,1,21]

9 lst = [0,8,1,2,1,7]

10 ...

Example 3: An example of CodeGen-16B error

Example 4 shows an example of InCoder-1.3B error. In this ex-
ample, InCoder-1.3B miss the task requirements that ‘y’ is also a
vowel, resulting in a semantic error of “Missing one statement” and
a syntactic error of “Missing code block”.
1 # Write a function vowels_count which takes a string representing
2 # a word as input and returns the number of vowels in the string.
3 # Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is
4 # also a vowel, but only when it is at the end of the given word.
5
6 def vowels_count(s):

7 if sum(1 for c in s if c in ’AEIOUaeiou’)

Example 4: An example of InCoder-1.3B error

Finding 2

We establish the first taxonomy of LLMs’ code generation
errors from two dimensions: semantic and syntactic errors.
Each of them includes fourteen specific types of errors.

MAPS ’23, December 3, 2023, San Francisco, CA, USA Song and Zhou, et al.

0 5 10 15 20 25

MISSING MULTIPLE
STATEMENTS

INCORRECT
CONDITION

MEANINGLESS CODE
SNIPPET

WRONG (LOGICAL)
DIRECTION

WRONG
METHOD/VARIABLE

CONSTANT VALUE
ERROR

MISSING ONE
STATEMENT

UNDEFINED NAME

INCORRECT
ARITHMETIC
OPERATION

INFINITE LOOP

MISS CONDITION

ONLY COMMENTS

INCORRECT
COMPARISON

OPERATION

17%

14%

13%

12%

9%

9%

6%

5%

4%

4%

4%

3%

1%

(a) CodeGen-16B

0 5 10 15 20 25

WRONG (LOGICAL)
DIRECTION

MISSING MULTIPLE
STATEMENTS

INCORRECT
CONDITION

WRONG
METHOD/VARIABLE

MEANINGLESS CODE
SNIPPET

ONLY COMMENTS

UNDEFINED NAME

MISSING ONE
STATEMENT
INCORRECT
ARITHMETIC
OPERATION

CONSTANT VALUE
ERROR

INFINITE LOOP

MISS CONDITION

23%

15%

12%

10%

9%

7%

6%

5%

5%

4%

2%

2%

(b) InCoder-1.3B

0 5 10 15 20 25

WRONG (LOGICAL)
DIRECTION

INCORRECT
CONDITION

WRONG
METHOD/VARIABLE

INCORRECT
ARITHMETIC
OPERATION

CONSTANT VALUE
ERROR

MISSING ONE
STATEMENT

MISSING MULTIPLE
STATEMENTS

INTEGER OVERFLOW

MISS CONDITION

INFINITE LOOP

ONLY COMMENTS

UNDEFINED NAME

19%

19%

12%

9%

9%

7%

6%

4%

4%

3%

3%

3%

(c) ChatGPT

Figure 2: Distribution of Semantic Errors made by three LLMs.

4.3 RQ3: Comparison between Different Models
Semantic Errors. Figure 2 shows the distribution of semantic
errors of three studied LLMs: CodeGen-16B, InCoder-1.3B, and
ChatGPT. Collectively, all three LLMs exhibit instances of all seven
primary categories of semantic errors, encompassing a total of 13,
12, and 12 respective sub-type errors. Three studied LLMs also share
a similar distribution regarding the error types. The most common
semantic error type is “Garbage Code”, consisting of “Only comments”,
“Meaningless code snippet”, and “Wrong (logical) direction”.
27.3%, 38.1%, and 22.4% of the errors made by three LLMs fall into
this category, respectively. We also notice that InCoder-1.3B has a
larger portion of “Wrong (logical) direction”. We suspect this is
due to the much smaller size of the model compared with the other
two LLMs, resulting in insufficient capabilities of understanding
complex task requirements. As shown in Example 5, InCoder-1.3B
failed to understand a relatively complex task. As a result, InCoder-
1.3B generated code in a wrong logical direction that only sorted
the input.
1 # You are given a 2 dimensional data, as a nested lists, which is
2 # similar to matrix, however, unlike matrices, each row may
3 # contain a different number of columns. Given lst, and integer x,
4 # find integers x in the list, and return list of tuples,
5 # [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate -
6 # (row, columns), starting with 0. Sort coordinates initially by
7 # rows in ascending order. Also, sort coordinates of the row by
8 # columns in descending order.
9
10 def get_row(lst, x):

11 lst = sorted(lst, key=lambda x: x[0])

12 lst = sorted(lst, key=lambda x: x[1])

13 return [(i, j) for i, j in zip(lst, lst[1:])]

Example 5: An example of Wrong (logical) direction made
by InCoder-1.3B

Another common error type is “Incorrect condition”, where
14%, 12%, and 19% of the errors made by CodeGen-16B, InCoder-
1.3B, and ChatGPT can be grouped into this category, respectively.
Example 6 shows an incorrect condition generated by ChatGPT.
1 # Create a function that returns True if the last character of a
2 # given string is an alphabetical character and is not a part of
3 # a word, and False otherwise. Note: "word" is a group of
4 # characters separated by space.
5
6 # Incorrect code by ChatGPT
7 def check_if_last_char_is_a_letter(txt):
8 if len(txt) == 0:
9 return False
10 else:
11 last_char = txt[-1]

12 if last_char.isalpha() and (len(txt.split()[-1]) == 1) :

13 return True
14 else:
15 return False
16
17 # Groundtruth
18 def check_if_last_char_is_a_letter(txt):
19 if len(txt) == 0: return False
20 if len(txt) == 1: return txt.isalpha()

21 return txt[-1].isalpha() and txt[-2] == " "

Example 6: An example of Incorrect condtion made by
ChatGPT

In this example, compared with the ground truth, ChatGPT does
not take the case that the last character might be a space into account.
For instance, if the given input is “apple pi e ”, ideally, the
function should return False. However, the code generated by
ChatGPT would return True because the strip method would
delete the spaces at the end of the string. These results indicate that
it is still challenging for LLMs to handle complex logical conditions.

Additionally, our analysis reveals that the two open-sourced
LLMs, CodeGen-16B and InCoder-1.3B, grapple with a notable
proportion (17% and 15%, respectively) of “Missing multiple

statements” errors. However, this category is relatively less fre-
quent in ChatGPT, with only 6% of the total errors falling into this

An Empirical Study of Code Generation Errors made by Large Language Models MAPS ’23, December 3, 2023, San Francisco, CA, USA

classification. A plausible explanation is that ChatGPT is better
at understanding natural language input (task requirements). For
instance (Example 7), both CodeGen-16B and InCoder-1.3B miss the
requirements that “the elements must be even numbers”, resulting in
missing statements within the generated code.
1 # Given a non-empty list of integers lst. Add the even elements
2 # that are at odd indices.
3
4 # Incorrect code by CodeGen-16B
5 def add(lst):
6 return sum(lst[1::2])
7
8 # Incorrect code by InCoder-1.3B
9 def add(lst):
10 return sum([lst[i] for i in range(1, len(lst), 2)])
11
12 # Groundtruth
13 def add(lst):
14 s = 0
15 for i in range(1, len(lst), 2):

16 if lst[i] % 2 == 0:
17 s += lst[i]
18 return s

Example 7: An example of missing statements by CodeGen-
16B and InCoder-1.3B

Finding 3

The most common error semantic types among three LLMs
are “Garbage Code” and “Condition Error”. Compared with
CodeGen-16B and InCoder-1.3B, ChatGPT deos not often
generate code with missing statements.

Furthermore, we find that even for a same failure task, different
LLMs could have different semantic error types. Out of 25 problems
that all three LLMs fail to solve, only one problem triggers the exact
same semantic error for these LLMs. This indicates that different
LLMs could behave differently on a same task. Example 8 shows an
example that three LLMs made different semantic errors.
1 # Complete the function that takes two integers and returns the
2 # product of their unit digits.
3
4 # Incorrect code by CodeGen-16B
5 def multiply(a, b):
6 return a * b
7
8 # Incorrect code by InCoder-1.3B
9 def multiply(a, b):
10 product = 1
11 while a > 0:
12 product *= a
13 a -= 1
14 while b > 0:
15 product *= b
16 b -= 1
17 return product
18
19 # Incorrect code by ChatGPT
20 def multiply(a, b):
21 return abs(a % 10 * b % 10)
22
23 # Groundtruth
24 def multiply(a, b):
25 return int(str(a)[-1]) * int(str(b)[-1])

Example 8: An example of three LLMs made different errors
on a same task

In this example, CodeGen-16B miss a few statements of handling
the “unit digits” (“Missing multiple statements”), while InCoder-
1.3B completely ignored the task (“Wrong (logical) direction”).
ChatGPT only made a small mistake with parentheses (“Incorrect
arithmetic operation”). One takeaway from such observation is
that ensemble of different LLMs might improve the code generation
successful rate.

Finding 4

Different LLMs could commit completely different semantic
errors with a same programming task.

Syntactic Errors. Figure 3 shows the distribution of Syntactic
Errors made by three LLMs. We can observe that all three LLMs
again share a similar distribution of syntactic errors. The most
common syntactic error type is “Code Block Error”, where 53.2%,
60.0%, and 43.2% of the errors made by CodeGen-16B, InCoder-
1.3B, and ChatGPT fall into this category, respectively. We believe
this could be largely attributed to an LLM’s mis-interpret the task
requirements. In such cases, a code patch might be needed to fix
“Incorrect code block” or “Missing code block”. Example 9 shows
an example that CodeGen-16B only generated comments.
1 # Returns a list l' such that l' is identical to l in the indicies
2 # that are not divisible by three, while its values at the
3 # indicies that are divisible by three are equal to the values of
4 # the corresponding indicies of l, but sorted.
5
6 def sort_third(l: list):
7 # l' = [l[i] for i in range(len(l)) if i % 3 != 0]
8 # l' = [l[i] for i in range(len(l)) if i % 3 != 0]
9 ...

Example 9: An example of missing code blocks by CodeGen-
16B

Another major type of syntactic errors is “Method Call Error”.
Specifically, the two open-sourced LLMs have more cases of
“Incorrect funtion name”, while ChatGPT encounters more
“Incorrect function arguments”. Example 10 shows an example
that ChatGPT generated incorrect arguments for the “spilt()”
method.
1 # You'll be given a string of words, and your task is to count the
2 # number of boredoms. A boredom is a sentence that starts with the
3 # word "I". Sentences are delimited by '.', '?' or '!'.
4
5 def is_bored(S):
6 sentences = S.split('.')
7 sentences += S.split('?')
8 sentences += S.split('!')
9 count = 0
10 for sentence in sentences:

11 if sentence.strip(). startswith(’I’) :

12 count += 1
13 return count

Example 10: An example of incorrect function arguments
generated by ChatGPT

The task requires the generated code to count the sentence that
starts with the word "I". Therefore, the correct code should change
the argument ’I’ to ’I ’ (a space is added).

MAPS ’23, December 3, 2023, San Francisco, CA, USA Song and Zhou, et al.

0 10 20 30 40

MISSING CODE
BLOCK

INCORRECT CODE
BLOCK

IF ERROR

INCORRECT
FUNCTION NAME

INCORRECT
FUNCTION

ARGUMENTS
INCORRECT
CONSTANT

FOR ERROR

INCORRECT
ARITHMETIC

INCORRECT RETURN
VALUE

WHILE ERROR

INCORRECT
COMPARISON

INCORRECT
VARIABLE NAME

IMPORT ERROR

35%

18%

13%

9%

6%

4%

4%

4%

3%

1%

1%

1%

1%

(a) CodeGen-16B

0 10 20 30 40

INCORRECT CODE
BLOCK

MISSING CODE
BLOCK

INCORRECT
FUNCTION NAME

IF ERROR

INCORRECT
FUNCTION

ARGUMENTS

FOR ERROR

INCORRECT
ARITHMETIC

IMPORT ERROR

INCORRECT
CONSTANT

INCORRECT RETURN
VALUE

WHILE ERROR

INCORRECT
VARIABLE NAME

INCORRECT METHOD
CALL TARGET

32%

28%

10%

9%

5%

4%

4%

3%

2%

2%

2%

1%

1%

(b) InCoder-1.3B

0 10 20 30 40

INCORRECT CODE
BLOCK

MISSING CODE
BLOCK

IF ERROR

INCORRECT
FUNCTION

ARGUMENTS

FOR ERROR

INCORRECT RETURN
VALUE

INCORRECT
CONSTANT

INCORRECT
ARITHMETIC

INCORRECT
FUNCTION NAME

WHILE ERROR

INCORRECT
VARIABLE NAME

IMPORT ERROR

27%

16%

13%

12%

9%

7%

4%

3%

3%

1%

1%

1%

(c) ChatGPT

Figure 3: Distribution of Syntactic Errors made by three LLMs.

Finding 5

A large number of syntactic errors made by three LLMs could
be grouped into “Code Block Error”. Besides, “Method Call

Error” also poses threats to the correctness of the generated
code.

5 IMPLICATIONS AND FUTURE
OPPORTUNITIES

Our study reveals several significant implications for the code gen-
eration by LLMs and unveils promising research opportunities to
improve the interpretability and reliability of code LLMs.

Firstly, we identify a significant proportion of semantic errors
originating from LLMs categorized as “Garbage Code”. This high-
lights instances where LLM behavior proves challenging to de-
cipher for human developers, exemplified by the production of
meaningless code snippets (Listing 1) or comments only (Listing 9).
These findings underscore potential research opportunities in the
realm of interpreting LLMs and the domain of explainable AI (XAI).
For instance, in cases where LLMs recurrently generate similar
statements, the employment of XAI techniques (such as attention-
based [46, 53, 54] or perturbation-based [29, 49]) could be explored
to ascertain if the model has compromised its capacity for capturing
long-term dependencies, i.e., if it loses track of task requirements
when generating new content. Additionally, when LLMs miss parts
of task requirements, an examination of whether the model exhibits
diminished attention to corresponding tokens could be undertaken.
By seamlessly integrating appropriate XAI methodologies, develop-
ers might gain insight into the underlying causes of LLM’s critical
generation errors and potentially devise strategies for enhancing
the model’s performance.

Secondly, although a few minor syntactic errors can potentially
be rectified through existing software repair techniques, yet, a larger
number of errors require non-trivial repair efforts due to their roots

in task requirementmisinterpretation (Listing 7 and Listing 10). This
reveals the distinction between repairing machine-generated and
human-authored code, resulting in the need of novel error-handling
mechanisms. For instance, when repairing an incorrect code snippet
generated by LLMs, it might be imperative to first determine if the
LLM has comprehensively grasped the task requirements. If this
understanding is established, some of the errors might be directed
towards existing software repair methodologies [32]; alternatively,
if the comprehension is lacking, a repair approach that compels
the LLM to accurately interpret the task prerequisites becomes
pertinent. Proposing these new repairing techniques would help
improve an LLM’s code generation accuracy.

Finally, our study has only studied the error patterns of Python
code generation. Since SOTA LLMs [2, 33] are able to support mul-
tiple programming languages, it is also worthwhile to expand our
study with programming tasks from other languages (e.g., C/C++
and Java [55]). Extensive studies would help improve our taxon-
omy of code generation errors, thereby empowering developers
with a more profound and comprehensive understanding of LLMs’
capabilities in code generation.

6 THREATS TO VALIDITY
Internal Validity. Potential threats come from our manual analysis
process. Labeling a code snippet’s error type is subjective, especially
for the semantic errors. Different labelers might have different
determinations of a same code snippet. To mitigate this, we first
performed open-coding and iteratively refined our codebook until a
substantial agreement is achieved. Our final Fleiss’ Kappa regarding
the semantic and syntactic errors are both above 0.68.
External Validity.One potential threat lies in the choice of dataset.
We have only labeled the HumanEval dataset, which only includes
Python programming tasks. Therefore, our established taxonomy
and findings might not generalize to other programming languages

An Empirical Study of Code Generation Errors made by Large Language Models MAPS ’23, December 3, 2023, San Francisco, CA, USA

and datasets. Furthermore, we have only experimented three LLMs
released in 2022. It is unclear whether our findings can generatl-
ize to the most recent LLMs, e.g., GPT4 [33], StarCoder [24], and
SantaCoder [4].
Construct Validity. Our taxonomy is built from an open-coding
process on a sampled subset of errors. Therefore, there is a potential
threat that specific types of errors were missed during the estab-
lishment of the codebook. To mitigate this, we sampled errors from
five different LLMs to include a diverse set of errors.

7 CONCLUSION
In this paper, we present an empirical study on code generation
errors made by large language models. We first derived a taxonomy
of LLMs’ code generation errors based on SOTA LLM’s failure
cases within the HumanEval dataset [12] through open-coding and
iterative refinements. Furthermore, we labeled errors committed
by three SOTA code generation LLMs based on the established
taxonomy. Through the investigation of three research questions,
we find that despite the difference of successful rates between LLMs,
a similar distribution of semantic and syntactic errors exists across
different models. At the end of the paper, we further discuss the
implications from our study and propose a few future research
opportunities for improving LLMs’ interpretability and reliability
in code generation.

REFERENCES
[1] 2023. Amazon CodeWhisperer. https://aws.amazon.com/codewhisperer/.
[2] 2023. ChatGPT. http://chat.openai.com.
[3] Naser Al Madi. 2022. How readable is model-generated code? examining readabil-

ity and visual inspection of github copilot. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–5.

[4] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 (2023).

[5] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).

[6] Shushan Arakelyan, Rocktim Jyoti Das, Yi Mao, and Xiang Ren. 2023. Exploring
Distributional Shifts in Large Language Models for Code Analysis. arXiv preprint
arXiv:2303.09128 (2023).

[7] Owura Asare, Meiyappan Nagappan, and N Asokan. 2022. Is github’s copi-
lot as bad as humans at introducing vulnerabilities in code? arXiv preprint
arXiv:2204.04741 (2022).

[8] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[9] Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: How programmers interact with code-generating models. Proceedings of
the ACM on Programming Languages 7, OOPSLA1 (2023), 85–111.

[10] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023.
Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712 (2023).

[11] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-
Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. MultiPL-E: a scalable and polyglot approach to
benchmarking neural code generation. IEEE Transactions on Software Engineering
(2023).

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[13] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.

arXiv preprint arXiv:2204.02311 (2022).
[14] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. 2017. Deep reinforcement learning from human preferences. Advances
in neural information processing systems 30 (2017).

[15] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive language models beyond a fixed-
length context. arXiv preprint arXiv:1901.02860 (2019).

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-
training for natural language understanding and generation. Advances in neural
information processing systems 32 (2019).

[18] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[19] Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

[20] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[21] Kevin Jesse, Toufique Ahmed, Premkumar T Devanbu, and Emily Morgan. 2023.
Large Language Models and Simple, Stupid Bugs. arXiv preprint arXiv:2303.11455
(2023).

[22] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. 1–23.

[23] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex
Aiken, and Percy S Liang. 2019. Spoc: Search-based pseudocode to code. Advances
in Neural Information Processing Systems 32 (2019).

[24] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[25] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. arXiv:2305.01210 [cs.SE]

[26] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li,
Xuan-Bach D Le, and David Lo. 2023. Refining ChatGPT-Generated Code: Char-
acterizing and Mitigating Code Quality Issues. arXiv preprint arXiv:2307.12596
(2023).

[27] Yue Liu, Chakkrit Tantithamthavorn, Yonghui Liu, and Li Li. 2023. On the
Reliability and Explainability of Automated Code Generation Approaches. arXiv
preprint arXiv:2302.09587 (2023).

[28] Zhijie Liu, Yutian Tang, Xiapu Luo, Yuming Zhou, and Liang Feng Zhang. 2023.
No Need to Lift a Finger Anymore? Assessing the Quality of Code Generation
by ChatGPT. arXiv preprint arXiv:2308.04838 (2023).

[29] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017).

[30] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1–5.

[31] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for codewithmulti-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[32] Wonseok Oh and Hakjoo Oh. 2022. PyTER: effective program repair for Python
type errors. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 922–934.

[33] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[34] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730–27744.

[35] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lam-
bert Pouguem Wassi, Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh
Sinha, and Reyhaneh Jabbarvand. 2023. Understanding the Effectiveness of Large
Language Models in Code Translation. arXiv preprint arXiv:2308.03109 (2023).

[36] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the keyboard? assessing the security of github
copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). IEEE, 754–768.

[37] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. Codebleu: a method for
automatic evaluation of code synthesis. arXiv preprint arXiv:2009.10297 (2020).

https://aws.amazon.com/codewhisperer/
http://chat.openai.com
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2303.08774

MAPS ’23, December 3, 2023, San Francisco, CA, USA Song and Zhou, et al.

[38] Atsushi Shirafuji, Yutaka Watanobe, Takumi Ito, Makoto Morishita, Yuki Naka-
mura, Yusuke Oda, and Jun Suzuki. 2023. Exploring the Robustness of Large Lan-
guageModels for Solving Programming Problems. arXiv preprint arXiv:2306.14583
(2023).

[39] Mohammed Latif Siddiq, Shafayat H Majumder, Maisha R Mim, Sourov Jajodia,
and Joanna CS Santos. 2022. An Empirical Study of Code Smells in Transformer-
based Code Generation Techniques. In 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 71–82.

[40] Anselm L Strauss and Juliet Corbin. 2004. Open coding. Social research methods:
A reader (2004), 303–306.

[41] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate Programming
Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[44] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by
large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[46] Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. 2022.
What do they capture? a structural analysis of pre-trained language models
for source code. In Proceedings of the 44th International Conference on Software
Engineering. 2377–2388.

[47] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and

generation. arXiv preprint arXiv:2109.00859 (2021).
[48] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022. Emergent abilities of large language models. arXiv preprint arXiv:2206.07682
(2022).

[49] Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020. Perturbed Masking:
Parameter-free Probing for Analyzing and Interpreting BERT. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. 4166–
4176.

[50] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

[51] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evalu-
ating the Code Quality of AI-Assisted Code Generation Tools: An Empirical
Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv preprint
arXiv:2304.10778 (2023).

[52] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the quality of
GitHub copilot’s code generation. In Proceedings of the 18th International Confer-
ence on Predictive Models and Data Analytics in Software Engineering. 62–71.

[53] Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An extensive study on pre-trained models for program under-
standing and generation. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 39–51.

[54] Kechi Zhang, Ge Li, and Zhi Jin. 2022. What does Transformer learn about source
code? arXiv preprint arXiv:2207.08466 (2022).

[55] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan
Wang, Lei Shen, Andi Wang, Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on humaneval-x. arXiv preprint
arXiv:2303.17568 (2023).

[56] Terry Yue Zhuo, Zhuang Li, Yujin Huang, Yuan-Fang Li, Weiqing Wang, Gholam-
reza Haffari, and Fatemeh Shiri. 2023. On robustness of prompt-based semantic
parsing with large pre-trained language model: An empirical study on codex.
arXiv preprint arXiv:2301.12868 (2023).

	Abstract
	1 Introduction
	2 Related Work
	2.1 LLM-based Code Generation
	2.2 Quality of AI-generated Code

	3 Methodology
	3.1 Dataset
	3.2 Code Generation LLMs
	3.3 Manual Analysis Procedure

	4 Results
	4.1 RQ1: Code Similarity
	4.2 RQ2: Error Taxonomy
	4.3 RQ3: Comparison between Different Models

	5 Implications and Future Opportunities
	6 Threats to Validity
	7 Conclusion
	References

