
Beyond Code
Generation

Towards Next-
Generation AI for SE

Vincent J. Hellendoorn

December 3rd, 2023

MAPS @ FSE

Where We Were

Max Roser (2022) - “The brief history of artificial intelligence: The world has changed fast – what might be next?” Published online at OurWorldInData.org. Retrieved from:
'https://ourworldindata.org/brief-history-of-ai' [Online Resource]

Where We Were

https://copilot.github.com/ https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Where We Aren’t

Today:
Where We Are, and Are Going

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

It’s time to move
beyond writing
assistants

1. Start by reflecting on the olden days (<2020)

2. Then, discuss how LLMs changed the picture

3. Next, highlight recent progress & trends

4. Finally, promises, challenges, needs & tips

Software Development Always
Changes

Software architecture

NATO SE conference

Programming-in-the-large

Software development environments

Subroutines

Separate compilation

Integrated product lines

Information hiding

Inheritance
Abstract data types

objects

Packages
Pipes and filters

Object-oriented Patterns

Model-driven development
Component-based Systems

Service-oriented arch
Cloud computing arch
Ultra large scale systems

End user software engineering
Web development tools

Macros

2000

1980

1950

1970

1990

1960

2010

2020

Vanishing
system

boundaries

Democratization
of Internet

Abstract
architectures

Programming-
any-which-way

Programming
-in-the-small

Programming-
in-the-large

Automated program repair
Mixed AI/traditional systems

CMU S3D, 17-808 Introduction

And so does SE research

“First Wave” of ML for SE

Hand-extracted features fed to off-the-shelf learners

Multiple, generic models (e.g., decision trees)

Practitioner focuses on features & statistics

Following the taxonomy from Allamanis et al., https://arxiv.org/abs/1709.06182
Image by Stable Diffusion XL

“First Wave” of ML for SE

D’ambros, ESE, Evaluating Defect Prediction Approaches: A Benchmark and an Extensive Comparison

What that looked like:

“First Wave” of ML for SE

Hand-extracted features fed to off-the-shelf learners

Pros:

• Useful for almost any task where decisions are made

Cons:

• Feature selection limits performance, requires manual effort

• Largely inapplicable to code

“Second Wave” of ML for SE

Learning from and for Source Code

Feature learning is left to the models

Model design is often inspired by tasks

Image by Stable Diffusion XL

“Second Wave” of ML for SE

Marc Brockschmidth, MSR. (Deep) Learning from Programs. Slides from: https://slideplayer.com/slide/16532816/
Allamanis et al., ICLR’18. Learning to Represent Programs with Graphs. https://arxiv.org/pdf/1711.00740.pdf
Wang et al., EMNLP’21. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

What that looked like:

“Second Wave” of ML for SE

Learning from and for Source Code

Pros:

• Increased expressivity, less manual effort

Cons:

• Learning limited by dataset size

• Limited practical utility

Image by Stable Diffusion XL

Obviously, the “third wave” is learning
program semantics, right?

Allamanis et al., https://arxiv.org/abs/1709.06182, slide from my job talk

Right?

The Bitter Lesson Strikes Again

GPT-3 (Brown et al., 2020), https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

“Third Wave” of ML for SE

Pretraining at immense scale

Not just on code

“Third Wave” of ML for SE

Pretraining at immense scale

Not just on code

In the world of Large Language Models, the

goal is generation and the currency is compute

https://dpfried.github.io/talks/programming-communication.pdff

We trained this
one early on

“Third Wave” of ML for SE

Pretraining at immense scale

Pros:

• Can generate large volumes of code & text

• Extraordinary representational power

Cons:

• Inherently generative

• Extremely data, compute hungry

Image by Stable Diffusion XL

Well, We Kept Feeding It

Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/artificial-intelligence' [Online Resource]

Where We Are: an Inflection Point

Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/artificial-intelligence' [Online Resource]

We used to model any process,

but the models were bad

Now we can model one process

insanely well

Let’s spread the love

Five Challenges for “AI for Code”

Five Challenges for “AI for Code”

1. Expanding Context

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

5. Navigating Process

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

5. Navigating Process

Context Scaling

LLM contexts have grown rapidly

Isn’t attention cost quadratic in input length?

A: Who cares

• It’s a small fraction of overall compute

• Often worth the cost during inference

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb

Context Scaling

Context is what you make of it

• Pretraining “packs” multiples files together

• Shuffle GitHub? The model learns to ignore adjacent files

Context Scaling

Rao et al., ASE’23. CAT-LM Training Language Models on Aligned Code And Tests

Context is what you make of it

• Pretraining “packs” multiples files together

• Shuffle GitHub? The model learns to ignore adjacent files

• Which is a waste

Using Long Contexts:
Test Prediction

Rao et al., ASE’23. CAT-LM Training Language Models on Aligned Code And Tests

Finding relevant data

Only 1M code/test pairs on GitHub?

No problem! Just use everything

Using Long Contexts:
Test Prediction

Rao et al., ASE’23. CAT-LM Training Language Models on Aligned Code And Tests

Finding relevant data

Some files are very long?

Throw compute at it!

Using Long Contexts:
Test Prediction

Rao et al., ASE’23. CAT-LM Training Language Models on Aligned Code And Tests

Of course this helps

We generate more valid tests on a fraction of the budget

• Coverage approaches, but doesn’t quite match, human programmers

• Larger models could do better

Work led by Nikitha Rao (nikitharao@cmu.edu)

Cloud compute credits contributed by Google

Context Scaling – Lessons

Spend compute where it is due

Scaling parameters and data are slowing down. Context has a lot to offer.

Add value through data

Better a million good tokens than a trillion boring ones

Still, a long way to go for modeling real contexts

See SWEBench

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

5. Navigating Process

Software Maintenance

Developers don’t only Write Code

Test prediction is still generative. What about understanding, analyzing code?

Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

A Case Study

All code has bugs, but most code isn’t buggy.

Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

A Case Study

All code has bugs, but most code isn’t buggy.

LLM have read all code. Can they tell?

Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Generation ≠ Interpretation

But, the information is already there

Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Generation ≠ Interpretation

In this work, we train:

• Low-dimensional, bidirectional adapter layers

• A lightweight classifier

Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Improves over purpose-built methods

Work led by Aidan Yang (aidan@cmu.edu)

Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Improves over purpose-built methods

Drastically improves over the initial LLM

Work led by Aidan Yang (aidan@cmu.edu)

A Theme Emerges

Lean on the pretrained model

LLMs have seen 10,000x what we can read in a lifetime

A ton of knowledge is untapped in those weights

To tap in, research needs to leverage on SE knowledge

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

5. Navigating Process

Modeling the
SE Process

https://blog.research.google/2023/05/large-sequence-models-for-software.html

Software development involves

a lot more than coding.

Can we model the whole process?

Modeling the SE Process

https://blog.research.google/2023/05/large-sequence-models-for-software.html

A more holistic view

Many tasks are connected

Developers appreciate help

anywhere, but good UX is key

Modeling the SE Process

A few more examples of promising trends

https://githubnext.com/projects/copilot-workspace/

Nam et al., In-IDE Generation-based Information Support with a Large Language Model. ICSE’24. https://arxiv.org/abs/2307.08177

A Call to Action

The field needs concerted efforts to study AI in the wild

AI is inherently about people – observational studies are becoming key

LLMs have entered supercomputing territory – no lab can do this alone

Come together and build high-quality benchmarks & tools

Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

5. Navigating Process

What’s Next?

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

What’s Next? – Shifting Right

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

What’s Next? – Shifting Left?

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

What’s Next if I am …

AI will increasingly interact with people – human subject studies are key

• Enabling productive collaboration with AI agents

• Start with: how do developers currently collaborate & communicate?

• Then: how will that change, as more and more SE is done by AI?

• Managing ownership and responsibilities in AI-generated/maintained projects

A researcher:

What’s Next if I am …

To make AI effective, we need new metrics and benchmarks

• How to evaluate a comment? A design document? An entire PR?

• We need next-generation benchmarks, possibly LLM-powered.

• Building frameworks of performance to support developers, end-users

• As LLMs enter UX, we need design patterns for agents, test suites for UIs

A researcher:

What’s Next if I am …

To democratize code and AI, we need to rethink programming

• Enabling code generation for 8 billion non-programmers

• Supporting learning, debugging, maintenance for end-users

• Bringing together programmers and non-programmers

• New development environments. Developers as a Service.

A researcher:

What’s Next if I am …

Learn the tools

Commercial: Copilot, ChatGPT, Bard, Claude, ...

Open-Source: InCoder, StarCoder (bidirectional context), CodeGen (strong on Python),

(Code)LLaMa (particularly large)

This list changes constantly, so important to stay up to date

Not a one-way street: add value with discernment, planning

A CS student/professional:

What’s Next if I am …

Shift the emphasis of your work

• Let AI do the tedious stuff

• Matplotlib’s parameters have ridiculous names that you can’t remember? Don’t try, use AI

• Need a boilerplate website? Go ask a conversational LLM

• The set of boring things AI does easily is growing fast

A CS student/professional:

What’s Next if I am …

Prepare for AI to do most of the coding

Prioritize people & design skills

• AI won’t tell you what to build next, or who uses your products and why

Keep track of what’s important

• AI is fueled by our past achievements. It changes what we think is hard & meaningful

• Keeping up with new tools helps you calibrate

A CS student/professional:

What’s Next if I am …

A non-programmer:
A near-term future where almost

anyone can almost code

• Some programming will be

like using a screwdriver

• Other times it’s more like

fixing a car

• Not always obvious which it’s

going to be

Beyond Code
Generation

Towards Next-
Generation AI for SE

Vincent J. Hellendoorn

December 3rd, 2023

MAPS @ FSE

vhellendoorn@google.com

mailto:vhellendoorn@google.com

	Motivation
	Slide 1: Beyond Code Generation Towards Next-Generation AI for SE
	Slide 2: Where We Were
	Slide 3: Where We Were
	Slide 4: Where We Aren’t
	Slide 5: Today: Where We Are, and Are Going
	Slide 6: It’s time to move beyond writing assistants

	Past
	Slide 7: Software Development Always Changes
	Slide 8: “First Wave” of ML for SE
	Slide 9: “First Wave” of ML for SE
	Slide 10: “First Wave” of ML for SE
	Slide 11: “Second Wave” of ML for SE
	Slide 12: “Second Wave” of ML for SE
	Slide 13: “Second Wave” of ML for SE
	Slide 14: Obviously, the “third wave” is learning program semantics, right?
	Slide 15: The Bitter Lesson Strikes Again
	Slide 16: “Third Wave” of ML for SE
	Slide 17: “Third Wave” of ML for SE
	Slide 18: “Third Wave” of ML for SE

	Present
	Slide 19: Well, We Kept Feeding It
	Slide 20: Where We Are: an Inflection Point
	Slide 22: Five Challenges for “AI for Code”
	Slide 23: Five Challenges for “AI for Code”
	Slide 24: Five Challenges for “AI for Code”
	Slide 25: Five Challenges for “AI for Code”
	Slide 26: Five Challenges for “AI for Code”
	Slide 27: Five Challenges for “AI for Code”
	Slide 28: Five Challenges for “AI for Code”
	Slide 29: Context Scaling
	Slide 31: Context Scaling
	Slide 32: Context Scaling
	Slide 33: Using Long Contexts: Test Prediction
	Slide 34: Using Long Contexts: Test Prediction
	Slide 35: Using Long Contexts: Test Prediction
	Slide 36: Context Scaling – Lessons
	Slide 37: Five Challenges for “AI for Code”
	Slide 38: Software Maintenance
	Slide 39: Software Maintenance: Fault Localization
	Slide 40: Software Maintenance: Fault Localization
	Slide 41: Software Maintenance: Fault Localization
	Slide 42: Software Maintenance: Fault Localization
	Slide 44: Software Maintenance: Fault Localization
	Slide 45: Software Maintenance: Fault Localization
	Slide 46: A Theme Emerges
	Slide 47: Five Challenges for “AI for Code”
	Slide 49: Modeling the SE Process
	Slide 50: Modeling the SE Process
	Slide 52: Modeling the SE Process
	Slide 53
	Slide 54
	Slide 55: A Call to Action

	Future
	Slide 56: Five Challenges for “AI for Code”
	Slide 57: What’s Next?
	Slide 58: What’s Next? – Shifting Right
	Slide 59: What’s Next? – Shifting Left?

	Wrap-up
	Slide 60: What’s Next if I am …
	Slide 61: What’s Next if I am …
	Slide 62: What’s Next if I am …
	Slide 63: What’s Next if I am …
	Slide 64: What’s Next if I am …
	Slide 65: What’s Next if I am …
	Slide 66: What’s Next if I am …
	Slide 67: Beyond Code Generation Towards Next-Generation AI for SE

