Beyond Code
Generation

Towards Next-
Generation Al for SE

Vincent J. Hellendoorn

December 31, 2023
MAPS @ FSE

Where We Were

Test scores of the Al relative to human performance
+20

the humans who did these tests

TAI systems perform better than

0<Human performance, as the benchmark, is set to zero.

VlAI systems perform worse
20 =S
40 /S S
Reading
-60 compre-
""" hension 1
-80 Handwriting recognition Language understanding
{00 Speech recognition Image recognition
T I I \ \ I [I I T

[I I

2000 2005
The capability of each Al system is normalized
to aninitial performance of -100.

\.

Max Roser (2022)- “The brief history of artificial intelligence: The world has changed fast - what might be next?” Published online at OurWorldinData.org. Retrieved from:
'https://ourworldindata.org/brief-history-of-ai' [Online Resource]

Where We Were

We recruited

A 95

developers, and split them randomly into two groups.

func createTables sql.DE
| "CREATE TABLE tasks (id INTEGER PRIMARY KEY, title TEXT, value INTEGER, category TEXT

We gave them the task of writing a web server in JavaScript
func createCategorySummaries

& 45 Used & 50 Did not use

GitHub Copilot GitHub Copilot

B 78% E 70%

finished finished
» 1hour, 11 minutes 2 hours, 41 minutes
average to complete the task average to complete the task
71 minutes | that's 55% less time! 161 minutes

CQD” Results are statistically significant (P=.0017) and the 95% confidence interval is [21%, 89%)

https://copilot.github.com/ https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/

Today:
Where We Are, and Are Going

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

1. Start by reflecting on the olden days (<2020)
2. Then, discuss how LLMs changed the picture
3. Next, highlight recent progress & trends

4. Finally, promises, challenges, needs & tips

It's time to move
beyond writing
assistants

Software Development Always

Changes

Mixed Al/traditional systems 2020
Automated program repai

Aﬂ d SO d oes SE resea I‘Ch Ultra large scale systems r/

Cloud computing arch 2010
Service-oriented arch
End user software engineering
Web development tools
Model-driven development 2000
Component-based Systems
Integrated product lines
Software architecture

Object-oriented Patterns — 199()

anishing
system
boundaries

. de'alCtka ges Democratization
ipes and filters
Software development environments / of Internet
Inheritance L 1980 Abstract ‘r&((\
objects :)
Abstract data types architectures

Programming-in-the-larg
Information hiding 1970
NATO SE conference

Separate compilation /

Subroutines 1960

Macros /

1950

Programming-
in-the-large

Programming
-in-the-small

Programming-

any-which-way

CMU S3D, 17-808 Introduction

“First Wave” of ML for SE

Hand-extracted features fed to off-the-shelf learners

Multiple, generic models (e.g., decision trees)

Practitioner focuses on features & statistics

Following the taxonomy from Allamanis et al., https://arxiv.org/abs/1709.06182
Image by Stable Diffusion XL

“First Wave” of ML for SE

Name Description
NR Number of revisions
W h t th t | k d | ! k . NREF Number of times a file has been refactored
a a O O e I e . NFIX Number of times a file was involved in bug-fixing
NAUTH Number of authors who committed the file
LINES Lines added and removed (sum, max, average)
CHURN Codechurn (sum, maximum and average)

Codechurn is computed as » (addedLOC — deletedLOC'), where R is the
set of all revisions

CHGSET Change set size, i.e., number of files committed together to the repository
(maximum and average)

AGE Age (in number of weeks) and weighted age computed as
>N | Age(i)xaddedLOC (3)

>N | addedLOC (i)

the release date for revision 4, and added LOC (%) is the number of lines of code
added at revision 2

, where Age(i) is the number of weeks starting from

GLM DT NB

Category of approach Mean Var | Mean Var | Mean Var
Process metrics (MOSER) 6.4 0.64 6.2 1.36 7.2 3.44
Previous defects (BUG-CAT) 6.6 5.84 4.2 3.76 5.2 10.16
Entropy of changes (HCM, WHCM, 5.8 12.16 4.6 6.64 6.8 10.56
EDHCM, LDHCM, LGDHCM)

Code metrics (CK4+00) 9.4 0.64 7.4 5.84 9.2 1.36
Churn of code metrics (LGDCHU) 8.8 0.96 5.6 5.84 6.4 5.84
Entropy of code metrics (LDHH) 9.0 0.81 6.6 1.84 7.2 8.96

D’ambros, ESE, Evaluating Defect Prediction Approaches: A Benchmark and an Extensive Comparison

“First Wave” of ML for SE

Hand-extracted features fed to off-the-shelf learners

Pros:

« Useful for almost any task where decisions are made

Cons:

» Feature selection limits performance, requires manual effort

« Largely inapplicable to code

“Second Wave” of ML for SE

Learning from and for Source Code

Feature learning is left to the models

Model design is often inspired by tasks

Image by Stable Diffusion XL

“Second Wave” of ML for SE

What that looked like:

"Summarize Python: def inc_value(x):..."

"Generate Python: increment value"

"Defect: if x=0: x += 1"

"Refine: if x=0: x += 1" {f’

o®) o o® o® o® oM
vV ¥V V¥V VW vV ¥V VW
B o W, - "Translate Python to C: if x==0: x +=1"
Bl NONE [] NONE
(ExpressionStatement) 1

. .
(InvocationExpression) g N N
/ ! ~ s

., .
- Vo b
ArgumentList . N N
ol fea, ~ ” - “

(MemberAccessExpression)

I
{NotNulll—H |

LY
Assert 2 - Ve

i —— .
-

e

N\
7

Marc Brockschmidth, MSR. (Deep) Learning from Programs. Slides from: https://slideplayer.com/slide/16532816/
Allamanis et al., ICLR'18. Learning to Represent Programs with Graphs. https://arxiv.org/pdf/1711.00740.pdf
Wang et al., EMNLP'21. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

"increment value"

"def inc_value(x):..."

S

P{ "true"

"if x == 0: x += 1"

L0

"if (x==0) {x += 1;}"

“Second Wave” of ML for SE

Learning from and for Source Code

Pros:

* Increased expressivity, less manual effort

Cons:

* Learning limited by dataset size

« Limited practical utility

Image by Stable Diffusion XL

Obviously, the “third wave” is learning

program semantics, right?

nght? Next Generation Models of Code

Code is static and dynamic
* Experts think of both
* Our models should too

6.1 The Third Wave of Machine Learning

The first wave of machine learning for source code applied off-the-shelf machine learning tools
with hand-extracted features. The second wave, reviewed here, avoids manual feature extraction
and uses the source code itself within machine learning heavily drawing inspiration from existing
machine learning methods in NLP and elsewhere. The third wave promises new machine learning
models informed by programming language semantics. What form will it take?

Allamanis et al., https://arxiv.org/abs/1709.06182, slide from my job talk

The Bitter Lesson Strikes Again

Zero-shot One-shot Few-shot
B fpr=E 175B Params
Natural Language v Il
60 Prompt

Accuracy (%)

= 13B Params

1.3B Params

Number of Examples in Context (K)
GPT-3 (Brown et al., 2020), https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

“Third Wave” of ML for SE

Pretraining at immense scale

Not just on code

“Third Wave” of ML for SE

Pretraining at immense scale
26%
Not just on code 2 @2
10
In the world of Large Language Models, the 2 D17% Q@@O
goal is generation and the currency is compute .
§ ®6% .6%
%101
a ©12% @15%

We trained this

one early on
0

10 0 1 2
10 10 10
Model Parameters (Billions)

https://dpfried.github.io/talks/programming-communication.pdff

“Third Wave” of ML for SE

Pretraining at immense scale

Pros:

« Can generate large volumes of code & text
* Extraordinary representational power
Cons:

* Inherently generative

« Extremely data, compute hungry

Image by Stable Diffusion XL

Well, We Kept Feeding It

Artificial intelligence: Performance on knowledge tests vs. training computation
Performance on knowledge tests is measured with the MMLU benchmark®. Training computation is measured in total
petaFLOP, which is 10** floating-point operations®.

100% Developer of Al system
B Bloomberg
GPT-4
B DeepMind
W Eleuther
80% .PaLM—Q B Google Research
B HuggingFace, BigScience
(%]
2 e Chinchilla ¢2-M(540B) W Meta Al
*gjo ¢ : B OpenAl
E 60% .LLaMA (33B) M Tsinghua KEG
2
2 ° 25T
= LLaMA (13B) 10T
S} ® "5
(] . .
e 9 BloombergGPT Circles sized by
é 40% LaMAEB), e o Training dataset size
:g .GPT-Z (Ainetuned) ° — ——
$ Gopher (0:4B) ‘ PalM (88)
20%
0%

100,000 1 million 10 million 100 million 1 billion 10 billion
Training computation (petaFLOP)

Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/artificial-intelligence'[Online Resource]

Where We Are: an Inflection Point

We used to model any process,
but the models were bad

Now we can model one process
insanely well

Let’s spread the love

Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldinda

Five Challenges for “Al for Code”

Five Challenges for “Al for Code”

1. Expanding Context

(
]

Five Challenges for “Al for Code”

1. Expanding Context

2. Software Maintenance

%

(
]

Five Challenges for “Al for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

Five Challenges for “Al for Code”

How o=

Expanding Context
Software Maintenance
Modeling Semantics

Interacting in Teams

Five Challenges for “Al for Code”

ok W o=

Expanding Context
Software Maintenance
Modeling Semantics
Interacting in Teams

Navigating Process

Five Challenges for “Al for Code”

. Expanding Context

Software Maintenance

Modeling Semantics

Interacting in Teams

s w N

Navigating Process

Context Scaling ‘

{t)@ I
° o —————— —-——-------..II
LLM contexts have grown rapidly T p R PSS

* & & w ¢ Q & q, o ° 9 s? W Q be
s \’yﬁi\&& f \l(po i g ?v‘bq \‘6 (\i& 6‘5\ ¥ /\Q 6§ é\o’(&@\‘%«i‘b 4-" (g O? \"5 '\{oi{oo # Q Q’ \'b"b ;\ 6
l§6 4 c?\,‘z & b2) o é?r;,’ b <
! : e 2 & b + —+—+ + |
Isn’t attention cost quadratic in input length 5 3 @ ®OpenAL | ANTHROPG
. [~ Hugging Face . § f’bg ~C®
. & F
A: Who cares e & @

« It'sa small fraction of overall compute

« Oftenworth the cost during inference

https://cobusgreyling.medium.com/rag-lim-context-size-6728a2f44beb

Context Scaling

Context is what you make of it

« Pretraining “packs” multiples files together code_foo.py
« Shuffle GitHub? The model learns to ignore adjacent files
code_bar.py
test foo.py

test bar.py

Context Scaling

Context is what you make of it

« Pretraining “packs” multiples files together code_foo.py

« Shuffle GitHub? The model learns to ignore adjacent files

« Which is a waste code_bar.py
test foo.py
test bar.py

Rao et al., ASE'23. CAT-LM Training Language Models on Aligned Code And Tests

Using Long Contexts:

Test Prediction

Finding relevant data

Only 1M code/test pairs on GitHub?

No problem! Just use everything

ass UserController {
public String getAllUsers() {

}

Rao et al., ASE'23. CAT-LM Training Language Models on Aligned Code And Tests

Test Files

public class
@Test

public void homePage() {

AppTest {

}
}

. Code-Test File Pairs

public class Bank {
public String customerSummar

}
}
<|codetestpair|>
public class BankTest {
@Test
public void customerSummar

}
}

Using Long Contexts:

Test Prediction

Test Files

Finding relevant data

public class AppTest {
@Test
public void homePage() {

Some files are very long?

Throw compute at it! N \\\\\\\) }
NN\ - Code-Test File Pairs
£ 200000 1 Python
S Java public class Bank {
2 150000 - public string customersummary() {
:: e
2 100000 }
T}
-g public class UserController { } .
5 50000 public String getAllUsers() { <|co?etestpalr|>
= public class BankTest {
0 T T T T T T T T T U @Test
10 50 b kw0 00 ol ok ol } ublic void customerSummary() {
N g S -_0 fLQ Q7 @) -_63 6%90 } P customersummary
Number of Tokens } .

Rao et al., ASE'23. CAT-LM Training Language Models on Aligned Code And Tests

Using Long Contexts:

Test Prediction

Of course this helps

We generate more valid tests on a fraction of the budget

« Coverage approaches, but doesn’t quite match, human programmers

120

e |a rger models COUld dO bet-ter CodeGen-multi-2B CodeGen-multi-2B

w
w

CodeGen-multi-16B CodeGen-multi-16B
100 CodeGen-mono-2B 30 StarCoder
CodeGen-mono-16B CAT-LM
StarCoder 25
80 CAT-LM

N
o

60

=
w

40

Work led by Nikitha Rao (nikitharao@cmu.edu)
Cloud compute credits contributed by Google

of passing generations
=
o

of passing generations

(9]

0

o

First test Last test Extra test First test Last test Extra test

Rao et al., ASE'23. CAT-LM Training Language Models on Aligned Code And Tests

Context Scaling - Lessons

Spend compute where it is due

Scaling parameters and data are slowing down. Context has a lot to offer.

Add value through data

Better a million good tokens than a trillion boring ones

Still, a long way to go for modeling real contexts
See SWEBench

Five Challenges for “Al for Code”

ok~ W N -~

Expanding Context

. Software Maintenance

Modeling Semantics
Interacting in Teams

Navigating Process

Software Maintenance

Developers don't only Write Code

Test prediction is still generative. What about understanding, analyzing code?

Software Maintenance:

Fault Localization

A Case Study y = o
if (x >= 0): NN

All code has bugs, but most code isnt buggy. th:rﬁ ; X3
ﬂ

Yang et al., ICSE'24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Software Maintenance:

Fault Localization

A Case Study y = o
if (x >= 0):INN

All code has bugs, but most code isn't buggy. SO ; X
n

!

Left-to-right Large
Language Model

LLM have read all code. Can they tell?

DN

Yang et al., ICSE'24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Software Maintenance:

Fault Localization

Generation +# Interpretation y = o

if (x >= 0): NN Causal Attention
But, the information is already there y = 1./ x5

return y

!

Left-to-right Large
Language Model

DN

Yang et al., ICSE'24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Software Maintenance:

Fault Localization

o ° Dimension
Generation # Interpretation [et
In this work, we train: Bidirectional)
Adapter Model
Low-dimensional, bidirectional adapter layers I
« Alightweight classifier Predict Bug
Probability

if (x »>= 0):
y =1/ x;

return y

Yang et al., ICSE'24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Bidirectional Attention

Software Maintenance:

Fault Localization

B Ochiai
° 175 ~
Improves over purpose-built methods o LansterrL
150 { WM Codegen-16B
B New Transformer

125

100

Work led by Aidan Yang (aidan@cmu.edu) 0-

top 1 top 3 top 5

Yang et al., ICSE'24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

Software Maintenance:

Fault Localization

Ochiai
TransferFL

LMFL
Codegen-16B
New Transformer

175 1

Improves over purpose-built methods

150

Drastically improves over the initial LLM

125
100

75

Work led by Aidan Yang (aidan@cmu.edu) 0-

top 1 top 3 top 5

Yang et al., ICSE'24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726

A Theme Emerges

Lean on the pretrained model

LLMs have seen 10,000x what we can read in a lifetime
A ton of knowledge is untapped in those weights

To tap in, research needs to leverage on SE knowledge

Five Challenges for “Al for Code”

1. Expanding Context

2. Software Maintenance

Mo et S .

4. Interactingin Teams

5. Navigating Process

Modeling the

SE Process

Software developmentinvolves
a lot more than coding.

Can we model the whole process?

https://blog.research.google/2023/05/large-sequence-models-for-software.html

]
—

“Import modules, not
classes.”

Unit test Compiler error ‘ ;
"test_symmetry” X line 13 goo.glfimport_modules
failed |
Tooiing ~1 [1/ . I
(compiler, linter, ' ' [/ / 7
static analysis) | / /"
= L4 E - @ |
Possesad| | M |/]

a docstring"

"LGTM"
comments - 4

] — f
/| "Oops, you . /

1
| ." |
l /gX,’ ."I .l o % ‘x‘ /| forgota [/
& { (W ———— - /
Reviewer) ‘ % (' ," §§‘ ;' /f'/,/ / I’ /
2 | { B w1 A L2 |/
i a 4{ I| o oa L"uél///
‘ . ; ' #q';q' #7?’),
b m v - (f \ 5 | W/ a
2py || - 4 " ‘ 6/ !
¢ ‘ \) / i
\ 1 y *\ 2 / A 3 4 Critique
- Developer \‘ s e I Changelist
N\ N\ / 2N TN
1py 1) 2) 3) (| 5 8 |
\, “"/‘ ;‘V',/ - / \ S S S Nt
2.py) 6 ¥
A 5 GitC Workspace
=/l\\x B ;.

Piper

Modeling the SE Process

A more holistic view

Many tasks are connected

Developers appreciate help
anywhere, but good UX is key

https://blog.research.google/2023/05/large-sequence-mode

DIDACT

Build Error Prediction

Comment Prediction

Variable Renaming

History-Augmented
Code Completion

Modeling the SE Process

A few more examples of promising trends

€)' Copilot Workspace

[lostintangent/contributor-gallery () #6

» The code renders an image element for the contributor's avatar and a text element for the login value

» The text element is a styled component that:
« is a sibling of the image element
» accepts the login value as child content
« is conditionally displayed when the cell is active
« has the same font size as the cell size theme property
» has a black text shadow
» is centered and has a z-index of 11

~ Plan

(O Define a styled component for the text element

(O Import the cell size theme property in the ContributorGalleryCell component

() Add a conditional rendering of the text element in the ContributorGalleryCell component
(O Adjust the z-index of the image element in the ContributorGalleryCell component

(O Make the text gold!

File changes 2
0 (Change | stc/components/Gallery/ContributorGalleryCell.tsx

D src/components/theme.ts
» 0:50/1:51

~ Status @ Planned specification change

©

rm
[

£

"7 Share

LAl

Users > dayqum > Documents > Research > PLM > Study > replication > tasks-P1

e et e ey et m ey mmt et b reg——

o3d.utility.VerbositylLevel.Debug) as cm:
labels = np.array(
pcd.cluster_dbscan(eps=0.01, min_points=10, print_

)

max_label = labels.max()

print(f“point cloud has {max_label + 1} clusters")

colors = plt.get_cmap(“Accent")(labels / (max_label if max
colors[labels < @] = @

pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])

U ILLM: overview]
This code loads a 3D mesh of a bunny, computes vertex norm
transformation and translates it.

How can | move bunny to sit upright?

bunny = o3d.data.BunnyMesh()

bunny_mesh = 03d.io.read_triangle_mesh(bunny.path)
bunny_mesh.compute_vertex_normals()

bunny_mesh.transform([[1, @, o, @], [0, -1, o, @], [0, @, -1, @]
bunny_mesh.translate([1.0, 2.0, 1.5])

vol = o3d.visualization.read_selection_polygon_volume(pcd_
chair = vol.crop_point_cloud(pcd)
chair.paint_uniform_color([1, 1, 8])

13 query Embed » :
the bunny mesh is transformed using a 4x4 transformation matrix that includes a dists = pcd.compute_point_cloud_distance(chair)
reflection along the y-axis and a rotation of 180 degrees around the x-axis. This dists = np.asarray(dists)

ind = np.where(dists > 0.01) [@]

transformation will make the bunny sppear upside down. pcd_without_chair = pcd.select_by_index(ind, invert=True)

To move the bunny to sit upright, you can remove the reflection along the y-axis and the
rotation around the x-axis. You can do this by changing the transformation matrix to: 41 o3d.visualization.draw_geometries([pcd, bunny_mesh], # [nc
) window_name="0pen3D",
({1, o, o, @], 43 point_show_normal=False,
[0, o0, 1, 0], + mesh_show_wireframe=True,
(e, -1, o, 0], zoom=0.3412,
(e, 0, 0, 1]] 16 front=[0.5, -0.2, -0.8],

lookat=[2.5, 2.0, 1.5],
up=[-0.1, -1.0, 0.2])
Ask a question... .
V4

R: (not attached) Ln 26, Col 1 (255 selected) Spaces:4 UTF-8 LF { Python 3.9664-bit & & 0O

A Call to Action

The field needs concerted efforts to study Al in the wild

Al is inherently about people - observational studies are becoming key

LLMs have entered supercomputing territory - no lab can do this alone

Come together and build high-quality benchmarks & tools

Five Challenges for “Al for Code”

. Navigating Process

Expanding Context
Software Maintenance
Modeling Semantics

Interacting in Teams

What's Next?

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

What's Next? - Shifting Right

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

What's Next? - Shifting Left?

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg

What's Next if | am ...

A researcher:

Al will increasingly interact with people - human subject studies are key

« Enabling productive collaboration with Al agents
« Start with: how do developers currently collaborate & communicate?
« Then: how will that change, as more and more SE is done by Al?

* Managing ownership and responsibilities in Al-generated/maintained projects

What's Next if | am ...

A researcher:

To make Al effective, we need new metrics and benchmarks

* How to evaluate a comment? A design document? An entire PR?
* We need next-generation benchmarks, possibly LLM-powered.
« Building frameworks of performance to support developers, end-users

* As LLMs enter UX, we need design patterns for agents, test suites for Uls

What's Next if | am ...

A researcher: \

To democratize code and Al, we need to rethink programming

» Enabling code generation for 8 billion non-programmers

« Supporting learning, debugging, maintenance for end-users

Bringing together programmers and non-programmers

* New development environments. Developers as a Service.

What's Next if | am ...

A CS student/professional:

Learn the tools

Commercial: Copilot, ChatGPT, Bard, Claude, ...

Open-Source: InCoder, StarCoder (bidirectional context), CodeGen (strong on Python),
(Code)LLaMa (particularly large)

This list changes constantly, so important to stay up to date

Not a one-way street: add value with discernment, planning

What's Next if | am ...

A CS student/professional:

Shift the emphasis of your work

* Let Al do the tedious stuft
* Matplotlib’s parameters have ridiculous names that you can’t remember? Don't try, use Al

* Need a boilerplate website? Go ask a conversational LLM

« The set of boring things Al does easily is growing fast
When using GitHub Copilot...

Perceived Productivity

| am more productive 88%

Satisfaction and Well-being”

Less frustrated when coding 59%

What's Next if | am ...

A CS student/professional:

Prepare for Al to do most of the coding

Prioritize people & design skills
« Al won't tell you what to build next, or who uses your products and why
Keep track of what’s important

« Alis fueled by our past achievements. It changes what we think is hard & meaningful

« Keeping up with new tools helps you calibrate e) Geoffrey Hinton

@geoffreyhinton

Caterpillars extract nutrients which are then converted into butterflies.
People have extracted billions of nuggets of understanding and GPT-4 is
humanity's butterfly.

4:27 PM - Mar 14, 2023 - 438.4K Views

What's Next if | am ...

A non-programmer:

A near-term future where almost
anyone can almost code

* Some programming will be

like using a screwdriver

Other times it's more like
fixing a car

Not always obvious which it's

going to be

Beyond Code
Generation

Towards Next-
Generation Al for SE

Vincent J. Hellendoorn
December 31 2023
MAPS @ FSE

vhellendoorn@google.com

mailto:vhellendoorn@google.com

	Motivation
	Slide 1: Beyond Code Generation Towards Next-Generation AI for SE
	Slide 2: Where We Were
	Slide 3: Where We Were
	Slide 4: Where We Aren’t
	Slide 5: Today: Where We Are, and Are Going
	Slide 6: It’s time to move beyond writing assistants

	Past
	Slide 7: Software Development Always Changes
	Slide 8: “First Wave” of ML for SE
	Slide 9: “First Wave” of ML for SE
	Slide 10: “First Wave” of ML for SE
	Slide 11: “Second Wave” of ML for SE
	Slide 12: “Second Wave” of ML for SE
	Slide 13: “Second Wave” of ML for SE
	Slide 14: Obviously, the “third wave” is learning program semantics, right?
	Slide 15: The Bitter Lesson Strikes Again
	Slide 16: “Third Wave” of ML for SE
	Slide 17: “Third Wave” of ML for SE
	Slide 18: “Third Wave” of ML for SE

	Present
	Slide 19: Well, We Kept Feeding It
	Slide 20: Where We Are: an Inflection Point
	Slide 22: Five Challenges for “AI for Code”
	Slide 23: Five Challenges for “AI for Code”
	Slide 24: Five Challenges for “AI for Code”
	Slide 25: Five Challenges for “AI for Code”
	Slide 26: Five Challenges for “AI for Code”
	Slide 27: Five Challenges for “AI for Code”
	Slide 28: Five Challenges for “AI for Code”
	Slide 29: Context Scaling
	Slide 31: Context Scaling
	Slide 32: Context Scaling
	Slide 33: Using Long Contexts: Test Prediction
	Slide 34: Using Long Contexts: Test Prediction
	Slide 35: Using Long Contexts: Test Prediction
	Slide 36: Context Scaling – Lessons
	Slide 37: Five Challenges for “AI for Code”
	Slide 38: Software Maintenance
	Slide 39: Software Maintenance: Fault Localization
	Slide 40: Software Maintenance: Fault Localization
	Slide 41: Software Maintenance: Fault Localization
	Slide 42: Software Maintenance: Fault Localization
	Slide 44: Software Maintenance: Fault Localization
	Slide 45: Software Maintenance: Fault Localization
	Slide 46: A Theme Emerges
	Slide 47: Five Challenges for “AI for Code”
	Slide 49: Modeling the SE Process
	Slide 50: Modeling the SE Process
	Slide 52: Modeling the SE Process
	Slide 53
	Slide 54
	Slide 55: A Call to Action

	Future
	Slide 56: Five Challenges for “AI for Code”
	Slide 57: What’s Next?
	Slide 58: What’s Next? – Shifting Right
	Slide 59: What’s Next? – Shifting Left?

	Wrap-up
	Slide 60: What’s Next if I am …
	Slide 61: What’s Next if I am …
	Slide 62: What’s Next if I am …
	Slide 63: What’s Next if I am …
	Slide 64: What’s Next if I am …
	Slide 65: What’s Next if I am …
	Slide 66: What’s Next if I am …
	Slide 67: Beyond Code Generation Towards Next-Generation AI for SE

