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Where We Were

Max Roser (2022) - “The brief history of artificial intelligence: The world has changed fast – what might be next?” Published online at OurWorldInData.org. Retrieved from: 
'https://ourworldindata.org/brief-history-of-ai' [Online Resource]



Where We Were

https://copilot.github.com/ https://github.blog/2022-09-07-research-quantifying-github-copilots-impact-on-developer-productivity-and-happiness/



Where We Aren’t



Today:
Where We Are, and Are Going

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg



It’s time to move
beyond writing 
assistants

1. Start by reflecting on the olden days (<2020)

2. Then, discuss how LLMs changed the picture

3. Next, highlight recent progress & trends

4. Finally, promises, challenges, needs & tips



Software Development Always 
Changes

Software architecture

NATO SE conference

Programming-in-the-large

Software development environments

Subroutines

Separate compilation

Integrated product lines

Information hiding

Inheritance
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CMU S3D, 17-808 Introduction

And so does SE research



“First Wave” of ML for SE

Hand-extracted features fed to off-the-shelf learners

Multiple, generic models (e.g., decision trees)

Practitioner focuses on features & statistics

Following the taxonomy from Allamanis et al., https://arxiv.org/abs/1709.06182
Image by Stable Diffusion XL 



“First Wave” of ML for SE

D’ambros, ESE, Evaluating Defect Prediction Approaches: A Benchmark and an Extensive Comparison 

What that looked like:



“First Wave” of ML for SE

Hand-extracted features fed to off-the-shelf learners

Pros:

• Useful for almost any task where decisions are made

Cons:

• Feature selection limits performance, requires manual effort

• Largely inapplicable to code



“Second Wave” of ML for SE

Learning from and for Source Code

Feature learning is left to the models

Model design is often inspired by tasks

Image by Stable Diffusion XL 



“Second Wave” of ML for SE

Marc Brockschmidth, MSR. (Deep) Learning from Programs. Slides from: https://slideplayer.com/slide/16532816/
Allamanis et al., ICLR’18. Learning to Represent Programs with Graphs. https://arxiv.org/pdf/1711.00740.pdf
Wang et al., EMNLP’21. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation

What that looked like:



“Second Wave” of ML for SE

Learning from and for Source Code

Pros:

• Increased expressivity, less manual effort

Cons:

• Learning limited by dataset size

• Limited practical utility

Image by Stable Diffusion XL 



Obviously, the “third wave” is learning 
program semantics, right?

Allamanis et al., https://arxiv.org/abs/1709.06182, slide from my job talk

Right?



The Bitter Lesson Strikes Again

GPT-3 (Brown et al., 2020), https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf


“Third Wave” of ML for SE

Pretraining at immense scale

Not just on code



“Third Wave” of ML for SE

Pretraining at immense scale

Not just on code

In the world of Large Language Models, the

goal is generation and the currency is compute

https://dpfried.github.io/talks/programming-communication.pdff

We trained this 
one early on



“Third Wave” of ML for SE

Pretraining at immense scale 

Pros:

• Can generate large volumes of code & text

• Extraordinary representational power

Cons:

• Inherently generative

• Extremely data, compute hungry

Image by Stable Diffusion XL 



Well, We Kept Feeding It

Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/artificial-intelligence' [Online Resource]



Where We Are: an Inflection Point

Published online at OurWorldInData.org. Retrieved from: ‘https://ourworldindata.org/artificial-intelligence' [Online Resource]

We used to model any process, 

but the models were bad

Now we can model one process 

insanely well

Let’s spread the love



Five Challenges for “AI for Code”
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Context Scaling

LLM contexts have grown rapidly

Isn’t attention cost quadratic in input length?

A: Who cares

• It’s a small fraction of overall compute

• Often worth the cost during inference

https://cobusgreyling.medium.com/rag-llm-context-size-6728a2f44beb



Context Scaling

Context is what you make of it

• Pretraining “packs” multiples files together

• Shuffle GitHub? The model learns to ignore adjacent files



Context Scaling

Rao et al., ASE’23. CAT-LM    Training Language Models on Aligned Code And Tests

Context is what you make of it

• Pretraining “packs” multiples files together

• Shuffle GitHub? The model learns to ignore adjacent files

• Which is a waste



Using Long Contexts:
Test Prediction

Rao et al., ASE’23. CAT-LM    Training Language Models on Aligned Code And Tests

Finding relevant data

Only 1M code/test pairs on GitHub?

No problem! Just use everything



Using Long Contexts:
Test Prediction

Rao et al., ASE’23. CAT-LM    Training Language Models on Aligned Code And Tests

Finding relevant data

Some files are very long?

Throw compute at it!



Using Long Contexts:
Test Prediction

Rao et al., ASE’23. CAT-LM    Training Language Models on Aligned Code And Tests

Of course this helps

We generate more valid tests on a fraction of the budget

• Coverage approaches, but doesn’t quite match, human programmers

• Larger models could do better

Work led by Nikitha Rao (nikitharao@cmu.edu)

Cloud compute credits contributed by Google



Context Scaling – Lessons

Spend compute where it is due

Scaling parameters and data are slowing down. Context has a lot to offer.

Add value through data

Better a million good tokens than a trillion boring ones

Still, a long way to go for modeling real contexts

See SWEBench



Five Challenges for “AI for Code”

1. Expanding Context

2. Software Maintenance

3. Modeling Semantics

4. Interacting in Teams

5. Navigating Process



Software Maintenance

Developers don’t only Write Code

Test prediction is still generative. What about understanding, analyzing code?



Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726 

A Case Study

All code has bugs, but most code isn’t buggy.



Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726 

A Case Study

All code has bugs, but most code isn’t buggy.

LLM have read all code. Can they tell?



Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726 

Generation ≠ Interpretation

But, the information is already there



Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726 

Generation ≠ Interpretation

In this work, we train:

• Low-dimensional, bidirectional adapter layers

• A lightweight classifier



Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726 

Improves over purpose-built methods

 

Work led by Aidan Yang (aidan@cmu.edu)



Software Maintenance:
Fault Localization

Yang et al., ICSE’24. Large Language Models for Test-Free Fault Localization. https://arxiv.org/abs/2310.01726 

Improves over purpose-built methods

Drastically improves over the initial LLM

Work led by Aidan Yang (aidan@cmu.edu)



A Theme Emerges

Lean on the pretrained model

LLMs have seen 10,000x what we can read in a lifetime

A ton of knowledge is untapped in those weights

To tap in, research needs to leverage on SE knowledge
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Modeling the
SE Process

https://blog.research.google/2023/05/large-sequence-models-for-software.html

Software development involves

a lot more than coding.

Can we model the whole process?



Modeling the SE Process

https://blog.research.google/2023/05/large-sequence-models-for-software.html

A more holistic view

Many tasks are connected

Developers appreciate help

anywhere, but good UX is key



Modeling the SE Process

A few more examples of promising trends



https://githubnext.com/projects/copilot-workspace/



Nam et al., In-IDE Generation-based Information Support with a Large Language Model. ICSE’24. https://arxiv.org/abs/2307.08177



A Call to Action

The field needs concerted efforts to study AI in the wild

AI is inherently about people – observational studies are becoming key

LLMs have entered supercomputing territory – no lab can do this alone

Come together and build high-quality benchmarks & tools



Five Challenges for “AI for Code”
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What’s Next?

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg



What’s Next? – Shifting Right

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg



What’s Next? – Shifting Left?

https://en.wikipedia.org/wiki/DevOps_toolchain#/media/File:Devops-toolchain.svg



What’s Next if I am …

AI will increasingly interact with people – human subject studies are key

• Enabling productive collaboration with AI agents

• Start with: how do developers currently collaborate & communicate?

• Then: how will that change, as more and more SE is done by AI?

• Managing ownership and responsibilities in AI-generated/maintained projects

A researcher:



What’s Next if I am …

To make AI effective, we need new metrics and benchmarks

• How to evaluate a comment? A design document? An entire PR?

• We need next-generation benchmarks, possibly LLM-powered.

• Building frameworks of performance to support developers, end-users

• As LLMs enter UX, we need design patterns for agents, test suites for UIs

A researcher:



What’s Next if I am …

To democratize code and AI, we need to rethink programming

• Enabling code generation for 8 billion non-programmers

• Supporting learning, debugging, maintenance for end-users

• Bringing together programmers and non-programmers

• New development environments. Developers as a Service.

A researcher:



What’s Next if I am …

Learn the tools

Commercial: Copilot, ChatGPT, Bard, Claude, ...

Open-Source: InCoder, StarCoder (bidirectional context), CodeGen (strong on Python), 

(Code)LLaMa (particularly large)

This list changes constantly, so important to stay up to date

Not a one-way street: add value with discernment, planning

A CS student/professional:



What’s Next if I am …

Shift the emphasis of your work

• Let AI do the tedious stuff

• Matplotlib’s parameters have ridiculous names that you can’t remember? Don’t try, use AI

• Need a boilerplate website? Go ask a conversational LLM

• The set of boring things AI does easily is growing fast

A CS student/professional:



What’s Next if I am …

Prepare for AI to do most of the coding

Prioritize people & design skills

• AI won’t tell you what to build next, or who uses your products and why

Keep track of what’s important

• AI is fueled by our past achievements. It changes what we think is hard & meaningful

• Keeping up with new tools helps you calibrate

A CS student/professional:



What’s Next if I am …

A non-programmer:
A near-term future where almost

anyone can almost code

• Some programming will be

like using a screwdriver

• Other times it’s more like

fixing a car

• Not always obvious which it’s

going to be
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